Advertisement

Computational Modeling Reinforces that Proprioceptive Cues May Augment Compliance Discrimination When Elasticity Is Decoupled from Radius of Curvature

  • Yuxiang Wang
  • Gregory J. GerlingEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)

Abstract

Our capability to discriminate object compliance is based on cues both tactile and proprioceptive, in addition to visual. To understand how the mechanics of the fingertip skin and bone might encode such information, we used finite element models to simulate the task of differentiating spherical indenters of radii (4, 6 and 8 mm) and elasticity (initial shear modulus of 10, 50 and 90 kPa). In particular, we considered two response variables, the strain energy density (SED) at the epidermal-dermal interface where Merkel cell end-organs of slowly adapting type I afferents reside, and the displacement of the fingertip bone necessary to achieve certain surface contact force. The former variable ties to tactile cues while the latter ties to proprioceptive cues. The results indicate that distributions of SED are clearly distinct for most combinations of object radii and elasticity. However, for certain combinations – e.g., between 4 mm spheres of 10 kPa and 8 mm of 90 kPa – spatial distributions of SED are nearly identical. In such cases where tactile-only cues are non-differentiable, we may rely on proprioceptive cues to discriminate compliance.

Keywords

Haptics Softness Compliance Perception Finite element analysis Touch Tactile Proprioception Mechanotransduction Biomechanics 

Notes

Acknowledgements

This work was supported by a grant from the National Institutes of Health (NIH NINDS R01NS073119). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

References

  1. 1.
    Srinivasan, M.A., LaMotte, R.H.: Tactual discrimination of softness. J. Neurophysiol. 73, 88–101 (1995)Google Scholar
  2. 2.
    Bergmann Tiest, W.M., Kappers, A.: Cues for haptic perception of compliance. IEEE Trans. Haptics 2, 189–199 (2009). doi: 10.1109/TOH.2009.16 CrossRefGoogle Scholar
  3. 3.
    Friedman, R.M., Hester, K.D., Green, B.G., LaMotte, R.H.: Magnitude estimation of softness. Exp. Brain Res. 191, 133–142 (2008). doi: 10.1007/s00221-008-1507-5 CrossRefGoogle Scholar
  4. 4.
    LaMotte, R.H.: Softness discrimination with a tool. J. Neurophysiol. 83, 1777–1786 (2000)Google Scholar
  5. 5.
    Condon, M., Birznieks, I., Hudson, K., et al.: Differential sensitivity to surface compliance by tactile afferents in the human fingerpad. J. Neurophysiol. (2013). doi: 10.1152/jn.00589.2013 zbMATHGoogle Scholar
  6. 6.
    Gwilliam, J.C., Yoshioka, T., Okamura, A.M., Hsiao, S.S.: Neural coding of lump detection in compliant artificial tissue. J. Neurophysiol. (2014). doi: 10.1152/jn.00032.2013
  7. 7.
    Gerling, G.J., Rivest II, Lesniak, D.R., et al.: Validating a population model of tactile mechanotransduction of slowly adapting type I afferents at levels of skin mechanics, single-unit response and psychophysics. IEEE Trans. Haptics 1–1 (2013). doi: 10.1109/TOH.2013.36
  8. 8.
    Dandekar, K.: Role of mechanics in tactile sensing of shape (1995)Google Scholar
  9. 9.
    Gulati, R.J., Srinivasan, M.A.: Human fingerpad under indentation I: static and dynamic force response. ASME-Publications-Bed 29, 261 (1995)Google Scholar
  10. 10.
    Holzapfel, G.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley, Chichester (2000)Google Scholar
  11. 11.
    Gitis, N., Sivamani, R.: Tribometrology of skin. Tribol. Trans. 47, 461–469 (2004). doi: 10.1080/05698190490493355 CrossRefGoogle Scholar
  12. 12.
    Proske, U., Gandevia, S.C.: The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012). doi: 10.1152/physrev.00048.2011 CrossRefGoogle Scholar
  13. 13.
    Johnson, K.: The roles and functions of cutaneous mechanoreceptors. Curr. Opin. Neurobiol. 11, 455–461 (2001). doi: 10.1016/S0959-4388(00)00234-8 CrossRefGoogle Scholar
  14. 14.
    Bicchi, A., Scilingo, E.P., De Rossi, D.: Haptic discrimination of softness in teleoperation: the role of the contact area spread rate. IEEE Trans. Robot. Autom. 16, 496–504 (2000). doi: 10.1109/70.880800 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Departments of Systems and Information Engineering, and Mechanical and Aerospace EngineeringUniversity of VirginiaCharlottesvilleUSA
  2. 2.Departments of Systems and Information Engineering, and Biomedical EngineeringUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations