Estimation of Finger Pad Deformation Based on Skin Deformation Transferred to the Radial Side

  • Yoichiro Matsuura
  • Shogo OkamotoEmail author
  • Yoji Yamada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)


Techniques to measure the deformation of finger pad when rubbing material surfaces are important for the analysis of textural sensations and development of tactile texture displays. However, such measurements are difficult because when the finger pad is in contact with the material surfaces, it is not exposed for measurement. We developed a technique to estimate finger pad shear deformation by using the skin deformation transferred to the side of the fingertip. Good agreement was shown between measured finger pad accelerations and those estimated by our method. The skin deformation of the finger side can be effectively used to estimate that of the finger pad with an average accuracy of 0.93.


Accelerometer Transfer function Skin impedance 


  1. 1.
    Konyo, M., Tadokoro, S., Takamori, T., Oguro, K.: Artificial tactile feel display using soft gel actuators. In: IEEE International Conference on Robotics and Automation, pp. 3416–3421 (2000)Google Scholar
  2. 2.
    Levesque, V., Hayward, V.: Experimental evidence of lateral skin strain during tactile exploration. In: Eurohaptics, pp. 261–275, July 2003Google Scholar
  3. 3.
    Wiertlewski, M., Losada, J., Hayward, V.: The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27, 461–472 (2011)CrossRefGoogle Scholar
  4. 4.
    Bensmaïa, S., Hollins, M.: Pacinian representations of fine surface texture. Percept. Psychophys. 67, 842–854 (2005)CrossRefGoogle Scholar
  5. 5.
    Webera, A.I., Saala, H.P., Lieberb, J.D., Chenga, J.W., Manfredia, L.R., Dammann III, J.F., Bensmaïa, S.J.: Spatial and temporal codes mediate the tactile perception of natural textures. PNAS 110, 17107–17112 (2013)CrossRefGoogle Scholar
  6. 6.
    Nakatani, M., Shiojima, K., Kinoshita, S., Kawasoe, T., Koketsu, K., Wada, J.: Wearable contact force sensor system based on fingerpad deformation. In: IEEE World Haptics Conference, pp. 323–328 (2011)Google Scholar
  7. 7.
    Tanaka, Y., Horita, Y., Sano, A.: Finger-mounted skin vibration sensor for active touch. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part II. LNCS, vol. 7283, pp. 169–174. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Okamoto, S., Wiertlewski, M., Hayward, V.: Anticipatory vibrotactile cueing facilitates grip force adjustment. In: IEEE World Haptics Conference, pp. 525–530 (2013)Google Scholar
  9. 9.
    Tomimoto, M.: The frictional pattern of tactile sensations in anthropomorphic fingertip. Tribol. Int. 44, 1340–1347 (2011)CrossRefGoogle Scholar
  10. 10.
    Mukaibo, Y., Shirado, H., Konyo, M., Maeno, T.: Development of a texture sensor emulating the tissue structure and perceptual mechanism of human fingers. In: IEEE International Conference on Robotics and Automation, pp. 2565–2570 (2005)Google Scholar
  11. 11.
    Wang, Q., Hayward, V.: In vivo biomechanics of the fingerpad skin under local tangential traction. J. Biomech. 40, 851–860 (2007)CrossRefGoogle Scholar
  12. 12.
    Lundstrom, R.: Local vibrations-mechanical impedance of the human hands glabrous skin. Biomechanics 17, 137–144 (1984)CrossRefGoogle Scholar
  13. 13.
    Nakazawa, N., Ikeura, R., Inooka, H.: Characteristics of human fingertips in the shearing direction. Biol. Cybern. 82, 207–214 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical Science and Engineering, The Graduate School of EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations