Integration of a Particle Jamming Tactile Display with a Cable-Driven Parallel Robot

  • Andrew A. StanleyEmail author
  • David Mayhew
  • Rikki Irwin
  • Allison M. Okamura
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)


Integration of a tactile display onto the end effector of a robot allows free-hand exploration of an encountered-type environment that provides both kinesthetic and cutaneous feedback. A novel tactile display approach, called Haptic Jamming, uses a combination of particle jamming and pneumatics to control the stiffness and shape of a surface. The tactile display mounts to the cable-driven platform of a kinesthetic system for medical simulation, called KineSys MedSim. The parallel structure of the robot provides a high strength-to-weight ratio for kinesthetic feedback in combination with a spatially aligned visual display. Its controller uses hand tracking to move the platform to the portion of the workspace the user is reaching toward. Data from a lump localization simulation demonstrates that the integrated system successfully tracks the user’s hand and reconfigures the tactile display according to the location of the end effector.


Haptic device design Haptic I/O Particle jamming Tactile display Parallel cable robotics 



This work was supported by U.S. Army Medical Research and Materiel Command (USAMRMC; W81XWH-11-C-0050) and by a National Science Foundation Graduate Research Fellowship. The views, opinions, and/or findings contained in this report are those of the authors and should not be construed as an official Department of the Army position, policy or decision unless so designated by other documentation. The authors thank Timothy Judkins and James Gwilliam for their work developing the robot and tactile display.


  1. 1.
    Dallej, T., Gouttefarde, M., Andreff, N., Dahmouche, R., Martinet, P.: Vision-based modeling and control of large-dimension cable-driven parallel robots. In: IEEE/RSJ Intelligent Robots and Systems, pp. 1581–1586 (2012)Google Scholar
  2. 2.
    Genecov, A.M., Stanley, A.A., Okamura, A.M.: Perception of a haptic jamming display: just noticeable differences in stiffness and geometry. In: IEEE Haptics Symposium, pp. 333–338 (2014)Google Scholar
  3. 3.
    Gwilliam, J.C., Bianchi, M., Su, L.K., Okamura, A.M.: Characterization and psychophysical studies of an air-jet lump display. IEEE Trans. Haptics 6(2), 156–166 (2013)CrossRefGoogle Scholar
  4. 4.
    Howe, R., Peine, W., Kantarinis, D., Son, J.: Remote palpation technology. IEEE Eng. Med. Biol. Mag. 14(3), 318–323 (1995)CrossRefGoogle Scholar
  5. 5.
    Judkins, T.N., Stevenson, M., Mayhew, D., Okamura, A.: Development of the KineSys MedSim: a novel hands-free haptic robot for medical simulation. In: Medicine Meets Virtual Reality (2011)Google Scholar
  6. 6.
    King, C.H., Culjat, M.O., Franco, M.L., Bisley, J.W., Dutson, E., Grundfest, W.S.: Optimization of a pneumatic balloon tactile display for robot-assisted surgery based on human perception. IEEE Trans. Biomed. Eng. 55(11), 2593–2600 (2008)CrossRefGoogle Scholar
  7. 7.
    Klare, S., Forssilow, D., Peer, A.: Formable object a new haptic interface for shape rendering. In: IEEE World Haptics Conference, pp. 61–66 (2013)Google Scholar
  8. 8.
    Liu, Y., Davidson, R., Taylor, P., Ngu, J., Zarraga, J.: Single cell magnetorheological fluid based tactile display. Displays 26(1), 29–35 (2005)CrossRefGoogle Scholar
  9. 9.
    Mayhew, D., Bachrach, B., Rymer, W., Beer, R.: Development of the MACARM - a novel cable robot for upper limb neurorehabilitation. In: Rehabilitation Robotics, pp. 299–302 (2005)Google Scholar
  10. 10.
    Merlet, J.P.: Parallel Robots, vol. 74. Springer, New York (2001)Google Scholar
  11. 11.
    Roberts, R.G., Graham, T., Lippitt, T.: On the inverse kinematics, statics, and fault tolerance of cable-suspended robots. J. Robot. Syst. 15(10), 581–597 (1998)CrossRefzbMATHGoogle Scholar
  12. 12.
    Roke, C., Spiers, A., Pipe, T., Melhuish, C.: The effects of laterotactile information on lump localization through a teletaction system. In: IEEE World Haptics Conference, pp. 365–370 (2013)Google Scholar
  13. 13.
    Rossignac, J., Allen, M., Book, W., Glezer, A., Ebert-Uphoff, I., Shaw, C., Rosen, D., Askins, S., Bosscher, P., Gargus, J., Llamas, I., Nguyen, A.: Finger sculpting with Digital Clay: 3D shape input and output through a computer-controlled real surface. In: Shape Modeling International, pp. 229–231 (2003)Google Scholar
  14. 14.
    Stanley, A.A., Gwilliam, J.C., Okamura, A.M.: Haptic jamming: a deformable geometry, variable stiffness tactile display using pneumatics and particle jamming. In: IEEE World Haptics Conference, pp. 25–30 (2013)Google Scholar
  15. 15.
    Taylor, P.: Advances in an electrorheological fluid based tactile array. Displays 18, 135–141 (1998)CrossRefGoogle Scholar
  16. 16.
    Taylor, P., Moser, A., Creed, A.: A sixty-four element tactile display using shape memory alloy wires. Displays 18, 163–168 (1998)CrossRefGoogle Scholar
  17. 17.
    Yokokohji, Y., Hollis, R.L., Kanade, T.: What you can see is what you can feel-development of a visual/haptic interface to virtual environment. In: IEEE Virtual Reality Annual International Symposium, pp. 46–53 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andrew A. Stanley
    • 1
    Email author
  • David Mayhew
    • 2
  • Rikki Irwin
    • 2
  • Allison M. Okamura
    • 1
  1. 1.Department of Mechanical EngineeringStanford UniversityStanfordUSA
  2. 2.Robotics and ElectroMechanical SystemsIntelligent Automation, Inc.RockvilleUSA

Personalised recommendations