A High-Fidelity Surface-Haptic Device for Texture Rendering on Bare Finger

  • Michaël WiertlewskiEmail author
  • Daniele Leonardis
  • David J. Meyer
  • Michael A. Peshkin
  • J. Edward Colgate
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)


We present the design and evaluation of a high fidelity surface-haptic device. The user slides a finger along a glass plate while friction is controlled via the amplitude modulation of ultrasonic vibrations of the plate. A non-contact finger position sensor and low latency rendering scheme allow for the reproduction of fine textures directly on the bare finger. The device can reproduce features as small as 25 \(\upmu \)m while maintaining an update rate of 5 kHz. Signal attenuation, inherent to resonant devices, is compensated with a feedforward filter, enabling an artifact-free rendering of virtual textures on a glass plate.


Surface-haptics Texture rendering Finger friction Feedforward filtering High fidelity haptics 



This work has been supported by the National Science Foundation, grants No. IIS-0964075 and IIS-1302422. The authors acknowledge the help of Daniel Russman in the development of the experimental platform.


  1. 1.
    Bergmann-Tiest, W.M., Kappers, A.M.L.: Analysis of haptic perception of materials by multidimensional scaling and physical measurements of roughness and compressibility. Acta Psychol. 121(1), 1–20 (2006)CrossRefGoogle Scholar
  2. 2.
    Smith, A.M., Chapman, C.E., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144(2), 211–223 (2002)CrossRefGoogle Scholar
  3. 3.
    Bensmaïa, S., Hollins, M.: The vibrations of texture. Somatosens. Mot. Res. 20(1), 33–43 (2003)CrossRefGoogle Scholar
  4. 4.
    Minsky, M., Lederman, S.: Simulated haptic textures: roughness. In: Proceedings of the ASME Dynamic Systems and Control Division, vol. 58, pp. 421–426 (1996)Google Scholar
  5. 5.
    Campion, G., Hayward, V.: Fundamental limits in the rendering of virtual haptic textures. In: IEEE World Haptics Conference, pp. 263–270 (2005)Google Scholar
  6. 6.
    Wiertlewski, M., Lozada, J., Hayward, V.: The spatial spectrum of tangential skin displacement can encode tactual texture. IEEE Trans. Robot. 27(3), 461–472 (2011)CrossRefGoogle Scholar
  7. 7.
    Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: IEEE ICRA, pp. 1134–1139, May 1995Google Scholar
  8. 8.
    Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze film effect for the design of an ultrasonic tactile plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. 54(12), 2678–2688 (2007)CrossRefGoogle Scholar
  9. 9.
    Winfield, L., Glassmire, J., Colgate, J.E., Peshkin, M.: T-pad: tactile pattern display through variable friction reduction. In: IEEE World Haptics Conference, pp. 421–426 (2007)Google Scholar
  10. 10.
    Giraud, F., Amberg, M., Lemaire-Semail, B.: Design and control of a haptic knob. Sens. Actuators, A Phys. 196, 78–85 (2013)CrossRefGoogle Scholar
  11. 11.
    Meyer, D.J., Wiertlewski, M., Peshkin, M., Colgate, J.E.: Dynamics of ultrasonic and electrostatic friction modulation for rendering texture on haptic surfaces. In: Proceedings of Haptic Symposium, pp. 218–226. IEEE (2014)Google Scholar
  12. 12.
    Bolanowski Jr, S.J., Gescheider, G.A., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680 (1988)CrossRefGoogle Scholar
  13. 13.
    Okamoto, S., Konyo, M., Saga, S., Tadokoro, S.: Detectability and perceptual consequences of delayed feedback in a vibrotactile texture display. IEEE Trans. Haptics 2(2), 73–84 (2009)CrossRefGoogle Scholar
  14. 14.
    Smith, A.M., Gosselin, G., Houde, B.: Deployment of fingertip forces in tactile exploration. Exp. Brain Res. 147(2), 209–218 (2002)CrossRefGoogle Scholar
  15. 15.
    Skedung, L., Arvidsson, M., Chung, J.Y., Stafford, C.M., Berglund, B., Rutland, M.W.: Feeling small: exploring the tactile perception limits. Sci. Rep. 3 (2013)Google Scholar
  16. 16.
    Millet, G., Haliyo, S., Regnier, S., Hayward, V.: The ultimate haptic device: first step. In: IEEE World Haptics Conference, pp. 273–278 (2009)Google Scholar
  17. 17.
    Verrillo, R.T.: Effect of contactor area on the vibrotactile threshold. J. Acoust. Soc. Am. 35, 1962 (1963)CrossRefGoogle Scholar
  18. 18.
    Wiertlewski, M., Hayward, V.: Mechanical behavior of the fingertip in the range of frequencies and displacements relevant to touch. J. Biomech. 45(11), 1869–1874 (2012)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Michaël Wiertlewski
    • 1
    Email author
  • Daniele Leonardis
    • 1
    • 2
  • David J. Meyer
    • 1
  • Michael A. Peshkin
    • 1
  • J. Edward Colgate
    • 1
  1. 1.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUSA
  2. 2.PERCRO LaboratoryScuola Superiore SantAnnaPisaItaly

Personalised recommendations