Advertisement

Haptic Rendering on Deformable Anatomical Tissues with Strong Heterogeneities

  • Guillaume KazmitcheffEmail author
  • Hadrien Courtecuisse
  • Yann Nguyen
  • Mathieu Miroir
  • Alexis Bozorg Grayeli
  • Stéphane Cotin
  • Olivier Sterkers
  • Christian Duriez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)

Abstract

This paper is focus on the development of a haptic rendering method to simulate interactions with heterogeneous deformable materials, such as anatomical components. Indeed, the strong heterogeneities of the biological tissues involves numerical and real-time issues to simulate the deformations and the mechanical interactions between the organs and the surgical tools. In this paper, we propose a new haptic algorithm adapted to the modeling of heterogeneous biological tissues, based on non-linear finite element model. The central contribution is the use of a triple asynchronous approach: one loop at low rate, which computes a preconditionner that solves the numerical conditioning problems; a second at intermediate rate, to update the model of the biological simulation; and the haptic loop which provides the feedback to the user at high rate. Despite of the desynchronization, we show that the calculation of haptic forces remains accurate compared to the model. We apply our method to a challenging microsurgical intervention of the human middle ear. This surgery requires a delicate gesture in order to master the applied forces.

Keywords

Finite Element Model Graphic Processing Unit Force Feedback Haptic Device Compliance Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Collin Ltd. (Bagneux, France) for financial support.

References

  1. 1.
    Duriez, C., Dubois, F., Kheddar, A., Andriot, C.: Realistic haptic rendering of interacting deformable objects in virtual environments. IEEE Trans. Vis. Comput. Graph. 12(1), 36–47 (2006)CrossRefGoogle Scholar
  2. 2.
    Signorini, A.: Sopra alcune questioni di elastostatica. Atti della Società Italiana per il Progresso delle Scienze (1933)Google Scholar
  3. 3.
    Saupin, G., Duriez, C., Cotin, S.: Contact model for haptic medical simulations. In: Bello, F., Edwards, E. (eds.) ISBMS 2008. LNCS, vol. 5104, pp. 157–165. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  4. 4.
    Peterlik, I., Nouicer, M., Duriez, C., Cotin, S., Kheddar, A.: Constraint-based haptic rendering of multirate compliant mechanisms. IEEE Trans. Haptics 4(3), 175–187 (2011)CrossRefGoogle Scholar
  5. 5.
    Courtecuisse, H., Allard, J., Kerfriden, P., Bordas, S.P.A., Cotin, S., Duriez, C.: Real-time simulation of contact and cutting of heterogeneous soft-tissues. Med. Image Anal. 18(2), 394–410 (2013)CrossRefGoogle Scholar
  6. 6.
    Lauxmann, M., Heckeler, C., Beutner, D., Lüers, J.C., Hüttenbrink, K.B., Chatzimichalis, M., Huber, A., Eiber, A.: Experimental study on admissible forces at the incudomalleolar joint. Otol. Neurotology 33(6), 1077–1084 (2012)Google Scholar
  7. 7.
    Gan, R.Z., Feng, B., Sun, Q.: Three-dimensional finite element modeling of human ear for sound transmission. Ann. Biomed. Eng. 32(6), 847–859 (2004)CrossRefGoogle Scholar
  8. 8.
    Kelly, D.J., Prendergast, P.J., Blayney, A.W.: The effect of prosthesis design on vibration of the reconstructed ossicular chain: a comparative finite element analysis of four prostheses. Otol. Neurotology 24(1), 11–19 (2003)CrossRefGoogle Scholar
  9. 9.
    Kazmitcheff, G., Miroir, M., Nguyen, Y., Ferrary, E., Sterkers, O., Cotin, S., Duriez, C., Grayeli, A.B.: Validation method of a middle ear mechanical model to develop a surgical simulator. Audiol. Neuro-otology 19(2), 73–84 (2014)CrossRefGoogle Scholar
  10. 10.
    Felippa, C.A., Haugen, B.: A unified formulation of small-strain corotational finite elements: I. Theory. Comput. Meth. Appl. Mech. Eng. 194(21–24), 2285–2335 (2005)CrossRefzbMATHGoogle Scholar
  11. 11.
    Miroir, M., Szewczyk, J., Nguyen, Y., Mazalaigue, S., Sterkers, O.: Design of a robotic system for minimally invasive surgery of the middle ear. In: IEEE RAS & EMBS BioRob, pp. 747–752. IEEE (2008)Google Scholar
  12. 12.
    Bergin, M., Sheedy, M., Ross, P., Wylie, G., Bird, P.: Measuring the forces of middle ear surgery; evaluating a novel force-detection instrument. Otol. Neurotology 35(2), e77–e83 (2014)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Guillaume Kazmitcheff
    • 1
    • 2
    • 3
    Email author
  • Hadrien Courtecuisse
    • 1
  • Yann Nguyen
    • 2
    • 3
    • 4
  • Mathieu Miroir
    • 2
    • 3
  • Alexis Bozorg Grayeli
    • 5
  • Stéphane Cotin
    • 1
  • Olivier Sterkers
    • 2
    • 3
    • 4
  • Christian Duriez
    • 1
  1. 1.Shacra, INRIAUniversité Lille 1Villeneuve d’AscqFrance
  2. 2.Sorbonne Universités, UPMC (University of Paris 06), UMR_S 1159ParisFrance
  3. 3.INSERM, UMR_S 1159ParisFrance
  4. 4.AP-HP, Hôpital Pitié-Salpétrière, service ORLParisFrance
  5. 5.CHU Dijon, service ORLDijonFrance

Personalised recommendations