Advertisement

Receiver-Based Hybrid Sample Prediction for Error-Resilient Haptic Communication

  • Fernanda BrandiEmail author
  • Eckehard Steinbach
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)

Abstract

We propose the use of a hybrid predictor at the receiver side of a teleoperation system to mitigate haptic artifacts due to packet losses. We define maximum wait times based on prediction angles for the sender to trigger new updates and for the receiver to switch prediction methods. Results show robust minimization of signal distortion in the presence of adverse transmission conditions while preserving the data rate conveniently low.

Keywords

[Robotics and automation]: Teleoperators [H.5.2.g]: Haptic I/O [E.4.a]: Data compaction and compression [C.2.1.g]: Network communications [Information Theory]: Error compensation 

Notes

Acknowledgment

This work has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007–2013)/ERC Grant agreement no. 258941.

References

  1. 1.
    Hinterseer, P., Hirche, S., Chaudhuri, S., Steinbach, E., Buss, M.: Perception-based data reduction and transmission of haptic data in telepresence and teleaction systems. IEEE Trans. Sig. Proc. 56(2), 588–597 (2008)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Shahabi, C., Ortega, A., Kolahdouzan, M.R.: A comparison of different haptic compression techniques. In: Proceedings of the IEEE International Conference on Multimedia & Expo., Lausanne, Switzerland, vol. 1, pp. 657–660, August 2002Google Scholar
  3. 3.
    Ortega, A., Liu, Y.: Lossy Compression of Haptic Data. Prentice Hall, Englewood Cliffs (2002)Google Scholar
  4. 4.
    Brandi, F., Kammerl, J., Steinbach, E.: Error-resilient perceptual coding for networked haptic interaction. In: Proceedings of the ACM Multimedia, Firenze, Italy, pp. 351–360, October 2010Google Scholar
  5. 5.
    Brandi, F., Cizmeci, B., Steinbach, E.: On the perceptual artifacts introduced by packet losses on the forward channel of haptic telemanipulation sessions. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 67–78. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  6. 6.
    Brandi, F., Steinbach, E.: Low-complexity error-resilient data reduction approach for networked haptic sessions. In: Proceedings of the IEEE International Workshop on Haptic Audio Visual Environments and Games, Qinhuangdao, China, pp. 135–140, October 2011Google Scholar
  7. 7.
    Kammerl, J., Brandi, F., Schweiger, F., Steinbach, E.: Error-resilient perceptual haptic data communication based on probabilistic receiver state estimation. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 227–238. Springer, Heidelberg (2012) CrossRefGoogle Scholar
  8. 8.
    Qin, J., Choi, K.S., Xu, R., Pang, W.M., Heng, P.A.: Packet-loss-resilient perception-based haptic data reduction and transmission using ACK packets. In: Proceedings of the International Conference on Signal Processing, Beijing, China, pp. 1165–1170, October 2012Google Scholar
  9. 9.
    Awed, J., Elhajj, I.H., Chehab, A., Kayssi, A.: Perception-aware packet-loss resilient compression for networked haptic systems. J. Comput. Commun. 36(15–16), 1621–1628 (2013)CrossRefGoogle Scholar
  10. 10.
    Brandi, F., Steinbach, E.: Prediction techniques for haptic communication and their vulnerability to packet losses. In: Proceedings of the IEEE International Workshop on Haptic Audio Visual Environments and Games, Istanbul, Turkey, pp. 63–68, October 2013Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Institute for Media TechnologyTechnische Universität MünchenMunichGermany

Personalised recommendations