Advertisement

Performance Evaluation of a Surgical Telerobotic System Using Kinematic Indices of the Master Hand-Controller

  • Yaster MaddahiEmail author
  • Michael Greene
  • Liu Shi Gan
  • Tomas Hirmer
  • Rachael L’Orsa
  • Sanju Lama
  • Garnette Roy Sutherland
  • Kourosh Zareinia
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)

Abstract

This paper investigates how kinematics of the master hand-controller, in a teleoperated system, is related to performance of the entire system. Experimental validations are presented on a surgical robotic system by emulating a part of microsurgery procedure in a laboratory setting. Isotropy index is chosen as a quantitative kinematic tool. The performance of the system is evaluated using four measures: rates of slave and master actuators efforts as well as distances travelled by the slave end-effector and the haptic implement. Results indicate that when the haptic device moves within regions with higher isotropy index, the performance improves. In order to further enhance the performance, the master site is augmented by a clutch that is found helpful to increase the hand-controller dexterity.

Keywords

Haptics Performance evaluation Dexterity Manipulability Isotropy index Robotic surgery 

References

  1. 1.
    Berkelman, P., Ma, J.: A compact, modular, teleoperated robotic minimally invasive surgery system. In: IEEE International Conference on Biomedical Robotics and Biomechatronics, pp. 702–707 (2006)Google Scholar
  2. 2.
    Konietschke, R., Ortmaier, T., Weiss, H., Hirzinger, G., Engelke, R.: Manipulability and accuracy measures for a medical robot in minimally invasive surgery. In: International Conference on Advances in Robot Kinematics (2004)Google Scholar
  3. 3.
    Greer, A.D., Newhook, P., Sutherland, G.R.: Human-machine interface for robotic surgery and stereotaxy. Int. J. Comput. Assist. Radiol. Surg. 1, 295–297 (2006)Google Scholar
  4. 4.
    Sutherland, G.R., Lama, S., Gan, L.S., Wolfsberger, S., Zereinia, K.: Merging machines with microsurgery: clinical experience with neuroArm. J. Neurosurg. 118, 521–529 (2013)CrossRefGoogle Scholar
  5. 5.
    Angeles, J., Park, F.C.: Performance evaluaion and design criteria. In: Siciliano, B., Khatib, O. (eds.) Handbook of Robotic, Chap. 10, pp. 229–244. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Yoshikawa, T.: Manipulability and redundancy control of robotic mechanisms. IEEE Int. Conf. Rob. Autom. 2, 1004–1009 (1985)Google Scholar
  7. 7.
    Balye, B., Fourquet, J.Y., Renaud, M.: Manipulability of wheeled mobile manipulators: application to motion generation. Int. J. Robot. Res. 22, 565–581 (2003)CrossRefGoogle Scholar
  8. 8.
    Balye, B., Fourquet, J.Y., Renaud, M.: Nonholonomic mobile manipulators: kinematics, velocities and redundancies. J. Intell. Rob. Syst. 36, 45–63 (2003)CrossRefGoogle Scholar
  9. 9.
    Melchiorri, C., Chiaccio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Global task space manipulability ellipsoids for multiple-arm systems and further considerations (with reply). IEEE Trans. Rob. Autom. 9, 232–236 (1993)CrossRefGoogle Scholar
  10. 10.
    Merlet, J.P.: Jacobian, manipulability, condition number and accuracy of parallel robots. J. Mech. Des. 28, 199–206 (2006)CrossRefGoogle Scholar
  11. 11.
    Beasley, R.A.: Medical robots: Current systems and research directions. J. Robot. 2, 1–14 (2012)CrossRefGoogle Scholar
  12. 12.
    Wortman, T., Meyer, A., Dolghi, O., et al.: Miniature surgical robot for laparoendoscopic single-incision colectomy. Surg. Endosc. 26, 727–731 (2012)CrossRefGoogle Scholar
  13. 13.
    Yoshikawa, T.: Analysis and control of robot manipulators with redundancy, J. Robot. Res. pp. 735–747 (1984)Google Scholar
  14. 14.
    Gloub, G., Van Loan, C.: Matrix computation, Johns Hopkins University Press (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yaster Maddahi
    • 1
    Email author
  • Michael Greene
    • 1
  • Liu Shi Gan
    • 1
  • Tomas Hirmer
    • 1
  • Rachael L’Orsa
    • 1
  • Sanju Lama
    • 1
  • Garnette Roy Sutherland
    • 1
  • Kourosh Zareinia
    • 1
  1. 1.Project NeuroArmUniversity of CalgaryCalgaryCanada

Personalised recommendations