Advertisement

Friction Sensation Produced by Laterally Asymmetric Vibrotactile Stimulus

  • Akihiro Imaizumi
  • Shogo OkamotoEmail author
  • Yoji Yamada
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)

Abstract

Vibrotactile texture stimuli have commonly been used to produce sensations of roughness. The extension of such stimuli to other textural modalities enhances their applicability. We found that laterally asymmetric vibrotactile stimuli cause a sensation of friction rather than vibration. When a vibrotactile contactor moves in one direction, it sticks to the finger pad and induces lateral skin stretch. In contrast, when the contactor moves in the other direction, it slips because of its quick motion and induces little skin stretch. As a result, humans experience frictional sensations in scanning vibrating contactors with their fingertips. We examined participants’ subjective responses and measured interactive forces between the finger pad and the contactor. Both perceptual and physical experiments corroborated the hypothesis of the production of a sensation of friction. Laterally asymmetric vibrotactile stimuli increased stretching of the finger pad skin and increased the sensation of friction.

Keywords

Texture display Skin stretch Friction Vibrotactile 

References

  1. 1.
    Wiertlewski, M., Lozada, J., Hayward, V.: The spatial spectrum of tangential skin displacementcan encode tactual texture. IEEE Trans. Robot. 27(3), 461–472 (2011)CrossRefGoogle Scholar
  2. 2.
    Fagiani, R., Massi, F., Chatelet, E., Berthier, Y., Akay, A.: Tactile perception by friction induced vibrations. Tribol. Int. 44(10), 1100–1110 (2011)CrossRefGoogle Scholar
  3. 3.
    Nonomura, Y., Fujii, T., Arashi, Y., Miura, T., Maeno, T., Tashiro, K., Kamikawa, Y., Monchi, R.: Tactile impression and friction of water on human skin. Colloids Surf. B 69(2), 264–267 (2009)CrossRefGoogle Scholar
  4. 4.
    Smith, A.M., Chapman, C.E., Deslandes, M., Langlais, J.S., Thibodeau, M.P.: Role of friction and tangential force variation in the subjective scaling of tactile roughness. Exp. Brain Res. 144(2), 211–223 (2002)CrossRefGoogle Scholar
  5. 5.
    Murphy, T.E., Webster III, R.J., Okamura, A.M.: Design and performance of a two-dimensional tactile slip display. In: Proceedings of the EuroHaptics 2004, pp. 130–137 (2004)Google Scholar
  6. 6.
    Provancher, W.R., Sylvester, N.D.: Fingerpad skin stretch increases the perception of virtual friction. IEEE Trans. Haptics 2(4), 212–223 (2009)CrossRefGoogle Scholar
  7. 7.
    Prattichizzo, D., Pacchierotti, C., Rosati, G.: Cutaneous force feedback as a sensory subtraction technique in haptics. IEEE Trans. Haptics 5, 289–300 (2012)CrossRefGoogle Scholar
  8. 8.
    Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 1134–1139 (1995)Google Scholar
  9. 9.
    Chubb, E.C., Colgate, J.E., Peshkin, M.A.: Shiverpad: a glass haptic surface that produces shear force on a bare finger. IEEE Trans. Haptics 3(3), 189–198 (2010)CrossRefGoogle Scholar
  10. 10.
    Yamamoto, A., Nagasawa, S., Yamamoto, H., Higuchi, T.: Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems. IEEE Trans. Vis. Comput. Graph. 12(2), 168–177 (2006)CrossRefGoogle Scholar
  11. 11.
    Konyo, M., Yamada, H., Okamoto, S., Tadokoro, S.: Alternative display of friction represented by tactile stimulation without tangential force. In: Ferre, M. (ed.) EuroHaptics 2008. LNCS, vol. 5024, pp. 619–629. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  12. 12.
    Matsui, K., Okamoto, S., Yamada, Y.: Effects of presentation of shear deformation to finger pad on tracing movements. In: Proceedings of 2011 IEEE International Conference on Robotics and Biomimetics, pp. 2479–2485 (2011)Google Scholar
  13. 13.
    Tappeiner, H.W., Klatzky, R.L., Unger, B., Hollis, R.: Good vibrations: asymmetric vibrations for directional haptic cues. In: Proceedings of the 2009 IEEE World Haptics Conference, pp. 285–289 (2009)Google Scholar
  14. 14.
    Amemiya, T., Gomi, H.: Directional torque perception with brief, asymmetric net rotation of a flywheel. IEEE Trans. Haptics 6(3), 370–375 (2013)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringNagoya UniversityNagoyaJapan

Personalised recommendations