The Effects of Force Feedback on Surgical Task Performance: A Meta-Analytical Integration

  • Bernhard WeberEmail author
  • Sonja Schneider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)


Since the introduction of surgical robots into clinical practice, there has been a lively debate about the potential benefits and the need to implement haptic feedback for the surgeon. In the current article, a quantitative review of empirical findings from 21 studies (N = 332 subjects) is provided. Using meta-analytical methods, we found moderate effects on task accuracy (g = .61), large effect sizes of additional force feedback on average forces (g = .82) and peak forces (g = 1.09) and no effect on task completion times (g = −.05) when performing surgical tasks. Moreover, the magnitude of the force feedback effect was attenuated when visual depth information was available.


Haptics Force feedback Telesurgery Surgical robots Minimally invasive surgery Depth information 3D vision Stereoscopy 


  1. 1.
    Arata, J., Takahashi, H., Yasunaka, S., Onda, K., Tanaka, K., Sugita, N., Hashizume, M., et al.: Impact of network time-delay and force feedback on tele-surgery. Int. J. Comput. Assist. Radiol. Surg. 3(3–4), 371–378 (2008)CrossRefGoogle Scholar
  2. 2.
    Bauernschmitt, R., Gaertner, C., Braun, E.U., Mayer, H., Knoll, A., Schreiber, U. Lange, R.: Improving the quality of robotic heart surgery: Evaluation in a new experimental system. In: Proceedings of the 4th Russian-Bavarian Conference on Biomedical Engineering at Moscow Institute of Electronic Technology, pp. 137–140. Technical University, Zelenograd, Moscow, Russia, 8/9 July 2008Google Scholar
  3. 3.
    Borenstein, M., Hedges, L.V., Higgins, J.P., Rothstein, H.R.: Introduction to Meta-Analysis. Wiley, Hoboken (2011)Google Scholar
  4. 4.
    Braun, E.U., Mayer, H., Knoll, A., Lange, R., Bauernschmitt, R.: The must-have in robotic heart surgery: haptic feedback. In: Medical Robotics, pp. 9–20. I-Tech Education and Publishing, Vienna, Austria (2008)Google Scholar
  5. 5.
    Braun, E.U., Gaertner, C., Mayer, H., Knoll, A., Lange, R., Bauernschmitt, R.: Haptic Aided Roboting for Heart Surgeons. In: Proceedings of the 4th European Conference of the International Federation for Medical and Biological Engineering, pp. 1695–1696. Springer Berlin Heidelberg (2009)Google Scholar
  6. 6.
    Cadiere, G.B., Himpens, J., Germay, O., Izizaw, R., Degueldre, M., Vandromme, J., et al.: Feasibility of robotic laparoscopic surgery: 146 cases. World J. Surg. 25(11), 1467–1477 (2001)Google Scholar
  7. 7.
    Cohen, J.: Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Erlbaum (1988)Google Scholar
  8. 8.
    Debus, T., Becker, T., Dupont, P., Jang, T.J., Howe, R.: Multichannel vibrotactile display for sensory substitution during teleoperation. In: Proceedings of SPIE–The International Society for Optical Engineering, Vol. 4570, pp. 42–49 (2001)Google Scholar
  9. 9.
    Deml, B.: Telepräsenzsysteme - Gestaltung der Mensch-System Schnittstelle, Dissertation thesis, University of the Armed Forces. (2004). Accessed 16 Jan 2014
  10. 10.
    Gerovich, O., Marayong, P., Okamura, A.M.: The effect of visual and haptic feedback on computer-assisted needle insertion. Comput. Aided Surg. 9(6), 243–249 (2004)CrossRefGoogle Scholar
  11. 11.
    Gwilliam, J.C., Mahvash, M., Vagvolgyi, B., Vacharat, A., Yuh, D.D., Okamura, A.M.: Effects of haptic and graphical force feedback on teleoperated palpation. In: ICRA’09. IEEE International Conference on Robotics and Automation, 2009, pp. 677–682. IEEE (2009)Google Scholar
  12. 12.
    Hagen, M.E., Meehan, J.J., Inan, I., Morel, P.: Visual clues act as a substitute for haptic feedback in robotic surgery. Surg. Endosc. 22(6), 1505–1508 (2008)CrossRefGoogle Scholar
  13. 13.
    Hedges, L., Olkin, I.: Statistical Methods for Meta-Analysis. Academic Press, San Diego (1985)zbMATHGoogle Scholar
  14. 14.
    Kazi, A.: Operator performance in surgical telemanipulation. Presence Teleoperators Virtual Environ. 10(5), 495–510 (2001)CrossRefGoogle Scholar
  15. 15.
    Mahvash, M., Gwilliam, J., Agarwal, R., Vagvolgyi, B., Su, L. M., Yuh, D. D., Okamura, A.M.: Force-feedback surgical teleoperator: Controller design and palpation experiments. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Haptics 2008, pp. 465–471. IEEE (2008)Google Scholar
  16. 16.
    Mohr, F.W., Falk, V., Diegeler, A., Walther, T., et al.: Computer-enhanced ‘robotic’ cardiac surgery: experience in 148 patients. J. Thorac. Cardiovasc. Surg. 121, 842–853 (2001)CrossRefGoogle Scholar
  17. 17.
    Moody, L., Baber, C., Arvanitis, T.N.: Objective surgical performance evaluation based on haptic feedback. Stud. Health Technol. Inf. 85, 304–310 (2002)Google Scholar
  18. 18.
    Nitsch, V., Färber, B.: A meta-analysis of the effects of haptic interfaces on task performance with teleoperation systems. IEEE Trans. Hapt. 6(4), 387–398 (2012)CrossRefGoogle Scholar
  19. 19.
    Okamura, A.M.: Methods for haptic feedback in teleoperated robot-assisted surgery. Ind. Rob. Int. J. 31(6), 499–508 (2004)CrossRefGoogle Scholar
  20. 20.
    Panait, L., Akkary, E., Bell, R.L., Roberts, K.E., Dudrick, S.J., Duffy, A.J.: The role of haptic feedback in laparoscopic simulation training. J. Surg. Res. 156(2), 312–316 (2009)CrossRefGoogle Scholar
  21. 21.
    Paul, L., Cartiaux, O., Docquier, P.L., Banse, X.: Ergonomic evaluation of 3D plane positioning using a mouse and a haptic device. Int. J. Med. Rob. Comput. Assist. Surg. 5(4), 435–443 (2009)CrossRefGoogle Scholar
  22. 22.
    Santos-Carreras, L., Beira, R., Sengül, A., Gassert, R., Bleuler, H.: Influence of force and torque feedback on operator performance in a VR-based suturing task. Appl. Bion. Biomech. 7(3), 217–230 (2010)CrossRefGoogle Scholar
  23. 23.
    Salkini, M.W., Doarn, C.R., Kiehl, N., Broderick, T.J., Donovan, J.F., Gaitonde, K.: The role of haptic feedback in laparoscopic training using the LapMentor II. J. Endourol. 24(1), 99–102 (2010)CrossRefGoogle Scholar
  24. 24.
    Seibold, U.: An advanced force feedback tool design for minimally invasive robotic surgery. Dissertation Thesis, Technical University Munich (2013)Google Scholar
  25. 25.
    Talasaz, A., Trejos, A. L., Patel, R.V.: Effect of force feedback on performance of robotics-assisted suturing. In: Proceedings of the 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), pp. 823–828. IEEE (2012)Google Scholar
  26. 26.
    Tholey, G.: A teleoperative haptic feedback framework for computer-aided minimally invasive surgery. Doctoral Dissertation, Drexel University (2007)Google Scholar
  27. 27.
    Van der Meijden, O.A.J., Schijven, M.P.: The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg. Endosc. 23(6), 1180–1190 (2009)CrossRefGoogle Scholar
  28. 28.
    Wagner, C.R., Howe, R.D.: Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task. IEEE Trans. Rob. 23(6), 1235–1240 (2007)CrossRefGoogle Scholar
  29. 29.
    Wagner, C.R., Stylopoulos, N., Howe, R.D.: The role of force feedback in surgery: analysis of blunt dissection. In: Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 73–79 (2002)Google Scholar
  30. 30.
    Westebring-van der Putten, E.P., Goossens, R.H.M., Jakimowicz, J.J., Dankelman, J.: Haptics in minimally invasive surgery-a review. Minim. Invasive Ther. Allied Technol. 17(1), 3–16 (2008)CrossRefGoogle Scholar
  31. 31.
    Yiasemidou, M., Glassman, D., Vasas, P., Badiani, S., Patel, B.: Faster simulated laparoscopic cholecystectomy with haptic feedback technology. Open Access Surg. 4, 39–44 (2011)CrossRefGoogle Scholar
  32. 32.
    Zhou, M., Perreault, J., Schwaitzberg, S.D., Cao, C.G.L.: Effects of experience on force perception threshold in minimally invasive surgery. Surg. Endosc. 22(2), 510–515 (2008)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.German Aerospace CenterRobotics and Mechatronics CenterOberpfaffenhofenGermany

Personalised recommendations