Low-Cost 5-DOF Haptic Stylus Interaction Using Two Phantom Omni Devices

  • Mats Isaksson
  • Ben HoranEmail author
  • Saeid Nahavandi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8619)


This paper introduces a haptic interface providing 5-DOF stylus interaction for applications requiring 3-DOF force and 2-DOF torque feedback. The interface employs two coupled Phantom Omni devices each offering 3-DOF force feedback and 6-DOF position sensing. The interface uses an inexpensive lightweight coupling and no additional actuators enabling the interface to maintain low inertia and stylus interaction, both similar to the original Phantom Omni device. The interface also maintains unconstrained rotation about the stylus’ longitudinal axis aiding in handheld manipulation. Kinematic analysis of the 5-DOF interface is presented and the usable workspace of the device is demonstrated.


5-DOF haptic interaction Phantom Omni 5-DOF stylus 


  1. 1.
    Martin, J., Savall, J.: Mechanisms for haptic torque feedback. In: First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 611–614 (2005)Google Scholar
  2. 2.
    Boschetti, G., Rosati, G., Rossi, A.: A haptic system for robotic assisted spine surgery. In: 2005 IEEE Conference on Control Applications, pp. 19–24 (2005)Google Scholar
  3. 3.
    Zhu, W., Lee, Y.S.: Five-axis pencil-cut planning and virtual prototyping with 5-DOF haptic interface. Comput. Aided Des. 36(13), 1295–1307 (2004)CrossRefGoogle Scholar
  4. 4.
    Ho, C.-H., Basdogan, C., Srinivasan, M.A.: Ray-based haptic rendering: force and torque interactions between a line probe and 3D objects in virtual environments. Int. J. Robot. Res. 19(7), 668–683 (2000)CrossRefGoogle Scholar
  5. 5.
    Iwata, H.: Pen-based haptic virtual environment. In: IEEE Virtual Reality Annual International Symposium, Seattle, pp. 287–292 (1993)Google Scholar
  6. 6.
    Salcudean, S.E., Stocco, L.: Isotropy and actuator optimization in haptic interface design. In: IEEE International Conference on Robotics and Automation, San Francisco, USA (2000)Google Scholar
  7. 7.
    Stocco, L.J., Salcudean, S.E., Sassani, F.: Optimal kinematic design of a haptic pen. IEEE/ASME Trans. Mechatron. 6(3), 210–220 (2001)CrossRefGoogle Scholar
  8. 8.
    Gosselin, F., Bidard, C., Brisset, J.: Design of a high fidelity haptic device for telesurgery. In: IEEE International Conference on Robotics and Automation, Barcelona, Spain (2005)Google Scholar
  9. 9.
    Gosselin, F., Ferlay, C., Bouchigny, S., Megard, C., Taha, F.: Specification and design of a new haptic interface for maxillo facial surgery. In: IEEE International Conference on Robotics and Automation, Shanghai, China, (2011)Google Scholar
  10. 10.
    Shah, A.V., Teuscher, S., McClain, E.W., Abbott, J.J.: How to build an inexpensive 5-DOF haptic device using two novint falcons. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010, Part I. LNCS, vol. 6191, pp. 136–143. Springer, Heidelberg (2010) CrossRefGoogle Scholar
  11. 11.
    Massie, T.H., Salisbury, K.J.: The PHANToM haptic interface: a device for probing virtual objects. In: 1994 ASME International Mechanical Engineering Congress and Exhibition, vol. DSC 55–1, pp. 295–302 (1994)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Centre for Intelligent Systems ResearchDeakin UniversityWaurn PondsAustralia
  2. 2.School of EngineeringDeakin UniversityWaurn PondsAustralia

Personalised recommendations