Skip to main content

Roughness Modulation of Real Materials Using Electrotactile Augmentation

  • Conference paper
  • First Online:
Haptics: Neuroscience, Devices, Modeling, and Applications (EuroHaptics 2014)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8618))

Abstract

In this paper, we present a roughness modulation technique that employs electrotactile augmentation to alter material texture perception, which is conducted through mechanically unconstrained touch. A novel electrotactile augmented reality system that superimposes modulating nerve activity onto afferent nerves at the middle phalanx of a finger is described. We conducted a user study in which participants were requested to rate the roughness of real materials that were explored using the system. The results indicated that participants could perceive the modulated fine- and macro-roughness via the electrotactile augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jeon, S., Choi, S.: Haptic augmented reality: taxonomy and an example of stiffness modulation. Presence: Teleoperators and Virtual Environ. 18(5), 387–408 (2009)

    Article  Google Scholar 

  2. Hachisu, T., Sato, M., Fukushima, S., Kajimoto, H.: Augmentation of material property by modulating vibration resulting from tapping. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012, Part I. LNCS, vol. 7282, pp. 173–180. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Follmer, S., Leithinger, D., Olwal, A., Cheng, N., Ishii, H.: Jamming user interfaces: programmable particle stiffness and sensing for malleable and shape-changing devices. In: Proceedings of UIST, pp. 519–528 (2012)

    Google Scholar 

  4. Asano, S., Okamoto, S., Matsuura, Y., Nagano, H., Yamada, Y.: Vibrotactile display approach that modifies roughness sensations of real textures. In: Proceedings of IEEE RO-MAN, pp. 1001–1006 (2012)

    Google Scholar 

  5. Kajimoto, H., Kawakami, N., Tachi, S., Inami, M.: Smarttouch: electric skin to touch the untouchable. IEEE Comput. Graphics Appl. 24(1), 36–43 (2004)

    Article  Google Scholar 

  6. Ando, H., Kusachi, E., Watanabe, J.: Nail-mounted tactile display for boundary/texture augmentation. In: Proceedings of ACE, pp. 292–293 (2007)

    Google Scholar 

  7. Bau, O., Poupyrev, I.: Revel: tactile feedback technology for augmented reality. ACM Trans. Graphics 31(4), 1–11 (2012). Article no. 89

    Article  Google Scholar 

  8. Kim, E., Sugg, K., Langhals, N., Lightbody, S., Baltrusaitis, M., Urbanchek, M., Cederna, P., Gerling, G.: An engineered tactile afferent modulation platform to elicit compound sensory nerve action potentials in response to force magnitude. In: Proceedings of WHC, pp. 241–246 (2013)

    Google Scholar 

  9. Kaczmarek, K.: Electrotactile adaptation on the abdomen:preliminary results. IEEE Trans. Rehabil. Eng. 8(4), 499–505 (2000)

    Article  Google Scholar 

  10. Antoni, H., Chilbert, A., Sweeney, D.: Applied Bioelectricity : From Electrical Stimulation to Electrophathology. Springer, New York (1998)

    Google Scholar 

  11. Micera, S., Keller, T., Lawrence, M., Morari, M., Popovic, D.: Wearable neural prostheses. restoration of sensory-motor function by transcutaneous electrical stimulation. IEEE Eng. Med. Biol. Mag. 29(3), 64–69 (2010)

    Article  Google Scholar 

  12. Yoshimoto, S., Kuroda, Y., Imura, M., Oshiro, O.: Development of a spatially transparent electrotactile display and its performance in grip force control. In: Proceedings of IEEE EMBC, pp. 3463–3466 (2011)

    Google Scholar 

  13. Lederman, S., Klatzky, R.: Sensing and displaying spatially distributed fingertip forces in haptic interfaces for teleoperator and virtual environment systems. Presence: Teleoperators and Virtual Environ. 8(1), 86–103 (1999)

    Article  Google Scholar 

  14. Yoshimoto, S., Kuroda, Y., Kagiyama, Y., Kuroda, T., Oshiro, O.: Tactile mapping approach using electrical stimulus pattern. In: Proceedings of IEEE RO-MAN, pp. 460–465 (2009)

    Google Scholar 

  15. Muniak, M., Ray, S., Hsiao, S., Dammann, J., Bensmaia, S.: The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J. Neurosci. 27(43), 11687–11699 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 22135003 and 25870394 in Japan. The study here presented has been approved by Ethical Committee of Graduate School of Engineering Science (25-3), Osaka University in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Yoshimoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yoshimoto, S., Kuroda, Y., Uranishi, Y., Imura, M., Oshiro, O. (2014). Roughness Modulation of Real Materials Using Electrotactile Augmentation. In: Auvray, M., Duriez, C. (eds) Haptics: Neuroscience, Devices, Modeling, and Applications. EuroHaptics 2014. Lecture Notes in Computer Science(), vol 8618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44193-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44193-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44192-3

  • Online ISBN: 978-3-662-44193-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics