Skip to main content

Prediction on Dwell Effects and Nonlinear Pressure Distribution

  • Chapter
  • First Online:
Pose-varied Multi-axis Optical Finishing Systems
  • 429 Accesses

Abstract

Mathematical modeling of removal dwell near the edge is presented in this chapter. The edge problem was solved for a range of tool sizes and path pitches. Based on the simulation results, optimizing dwell strategies for various ratios of the tool size and path pitches were analyzed, and the effectiveness of reducing the tool size and path pitch on reducing the edge error was examined, and data extension algorithms were theoretically researched to obtain an ideal solution to suppress the edge effect. Further work dedicates to modify the pressure distribution model by finite element analysis to make the removal shape of emulation tool influence functions (e-TIFs) more close to practical tool influence functions (p-TIFs), and predict the practical removal rate of e-TIFs by reverse-calculating the material removal of a prefinishing process to the formal workpiece. Process experiments were then included on the use of small tools for edge rectification. The pressure shows a nonlinear relation to the radial distance rather than average distribution model. The maximal deviation of emulational removal shape to the practical removal shape of TIF spot was experimental validated to be less than 5 %.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans C, Paul E, Dornfeld D, Lucca D, Byrne G, Tricard M, Klocke F, Dambon O, Mullany B (2003) Material removal mechanisms in lapping and polishing. CIRP Ann Manufact Technol 52(2):611–633

    Article  Google Scholar 

  2. Tsai MJ, Huang J, Kao W (2009) Robotic polishing of precision molds with uniform material removal control. Int J Mach Tools Manuf 49(11):885–895

    Article  Google Scholar 

  3. Zhao J, Saito K, Kondo T, Narahara H, Igarashi S, Sasaki T, Zhang L (1995) A new method of automatic polishing on curved aluminium alloy surfaces at constant pressure. Int J Mach Tools Manuf 35(12):1683–1692

    Article  Google Scholar 

  4. Shia CY, Stango R, Heinrich S (1998) Analysis of contact mechanics for a circular filamentary brush/workpart system. J Manuf Sci Eng 120(4):715–721

    Article  Google Scholar 

  5. Xie Y, Bhushan B (1996) Effects of particle size, polishing pad and contact pressure in free abrasive polishing. Wear 200(1):281–295

    Article  Google Scholar 

  6. Liu H, Wang J, Huang C (2008) Abrasive liquid jet as a flexible polishing tool. Int J Mater Prod Technol 31(1):2–13

    Article  MathSciNet  Google Scholar 

  7. Kordonski W, Golini D (1999) Progress update in magnetorheological finishing. Int J Mod Phys B 13(14–16):2205–2212

    Google Scholar 

  8. Kuriyagawa T, Saeki M, Syoji K (2002) Electrorheological fluid-assisted ultra-precision polishing for small three-dimensional parts. Precis Eng 26(4):370–380

    Article  Google Scholar 

  9. Ho L, Cheung C, To S (2012) An experimental investigation of surface generation using an integrated ultra-precision polishing process and different polishing trajectories. Proc Inst Mech Eng Part B J Eng Manufact 226(2):203–220

    Article  Google Scholar 

  10. Tsai S, Ke H, Ke J, Huang F, Yan B (2012) Development of hot melt adhesive pad and its application to polishing of monocrystalline silicon. Proc Inst Mech Eng Part B J Eng Manufact 226(1):92–102

    Article  Google Scholar 

  11. Tam HY (1999) Toward the uniform coverage of surfaces by scanning curves. Comput Aided Des 31(9):585–596

    Article  MATH  Google Scholar 

  12. Vlassak J (2004) A model for chemical–mechanical polishing of a material surface based on contact mechanics. J Mech Phys Solids 52(4):847–873

    Article  MATH  Google Scholar 

  13. Jiang W, Tam HY, Au-Yeung TC (2011) Cutting of Fresnel lensed by truncated diamond tools. In: Proceeding of SPIE, Rochester, pp 138–140

    Google Scholar 

  14. Kim DW, Park WH, Kim SW, Burge JH (2009) Parametric modeling of edge effects for polishing tool influence functions. Opt Express 17(7):5656–5665

    Article  Google Scholar 

  15. Walker D, Yu G, Li H, Messelink W, Evans R, Beaucamp A (2012) Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface. Opt Express 20(18):19787–19798

    Article  Google Scholar 

  16. Zhang L, Tam H, Yuan C, Chen Y, Zhou Z, Zheng L (2002) On the removal of material along a polishing path by fixed abrasives. Proc Inst Mech Eng Part B J Eng Manufact 216(9):1217–1225

    Article  Google Scholar 

  17. Tam H, Hua M, Zhang L (2011) Polishing force modification near the boundary of a part surface. Adv Mater Res 264:1148–1153

    Article  Google Scholar 

  18. Tam HY, Cheng HB (2010) An investigation of the effects of the tool path on the removal of material in polishing. J Mater Process Technol 210(5):807–818

    Article  Google Scholar 

  19. Jones RA (1977) Optimization of computer controlled polishing. Appl Opt 16(1):218–224

    Article  Google Scholar 

  20. Wilson SR, McNeil JR (1987) Neutral ion beam figuring of large optical surfaces. In: Proceeding of SPIE, San Diego, pp 320–324

    Google Scholar 

  21. Carnal CL, Egert CM, Hylton KW (1992) Advanced matrix-based algorithm for ion-beam milling of optical components. In: Proceeding of SPIE, San Diego, pp 54–62

    Google Scholar 

  22. Deng WJ, Zheng LG, Shi YL, Wang XK, Zhang XJ (2007) Dwell-time algorithm based on matrix algebra and regularization method. Opt Precis Eng 15:1009–1015

    Google Scholar 

  23. Zhou L, Dai YF, Xie XH, Jiao CJ, Li SY (2007) Model and method to determine dwell time in ion beam figuring. Nanotechnol Precis Eng 5(2):107–112

    Google Scholar 

  24. Wu JF, Lu ZW, Zhang HX, Wang TS (2009) Dwell time algorithm in ion beam figuring. Appl Opt 48(20):3930–3937

    Article  Google Scholar 

  25. Su H, Cui X (2003) LAMOST project and its current status. In: Proceedings of SPIE, San Diego, p 4837

    Google Scholar 

  26. Johns M, Angel JRP, Shectman S, Bernstein R, Fabricant DG, McCarthy P, Phillips M (2004) Status of the giant magellan telescope (GMT) project. In: Proceeding of SPIE, Glasgow, pp 441–453

    Google Scholar 

  27. Zimmerman DC (2010) Feasibility studies for the alignment of the Thirty Meter Telescope. Appl Opt 49(18):3485–3498

    Article  Google Scholar 

  28. Cordero DA, Gonzalez GJ, Pedrayes LM, Aguilar CL, Cuautle CJ, Robledo SC (2004) Edge effects with the Preston equation for a circular tool and workpiece. Appl Opt 43(6):1250–1254

    Article  Google Scholar 

  29. Hu H, Dai Y, Peng X, Wang J (2011) Research on reducing the edge effect in magnetorheological finishing. Appl Opt 50(9):1220–1226

    Article  Google Scholar 

  30. Li H, Walker D, Yu G, Sayle A, Messelink W, Evans R, Beaucamp A (2013) Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges. Opt Express 21(1):370–381

    Article  Google Scholar 

  31. Kim DW, Park WH, Kim SW, Burge JH (2009) Parametric modeling of edge effects for polishing tool influence functions. Opt Express 17(7):5656–5665

    Article  Google Scholar 

  32. Guo P, Fang H, Yu J (2006) Edge effect in fluid jet polishing. Appl Opt 45(26):6729–6735

    Article  Google Scholar 

  33. Fang H, Guo P, Yu J (2006) Dwell function algorithm in fluid jet polishing. Appl Opt 45(18):4291–4296

    Article  Google Scholar 

  34. Marks I, Robert J (1981) Gerchberg’s extrapolation algorithm in two dimensions. Appl Opt 20(10):1815–1820

    Article  Google Scholar 

  35. Dong ZC, Cheng HB, Tam HY (2012) Investigation on removal features of multidistribution fixed abrasive diamond pellets used in the polishing of SiC mirrors. Appl Opt 51(35):8373–8382

    Article  Google Scholar 

  36. Jones RA (1977) Optimization of computer controlled polishing. Appl Opt 16(1):218–224

    Article  Google Scholar 

  37. Wang T, Cheng HB, Dong ZC, Tam HY (2013) Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid. J Mater Process Technol 213(9):1532–1537

    Article  Google Scholar 

  38. Cheung CF, Kong LB, Ho LT, To S (2011) Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing. Precis Eng 35(4):574–590

    Article  Google Scholar 

  39. Li H, Walker D, Yu G, Sayle A, Messelink W, Evans R, Beaucamp A (2013) Edge control in CNC polishing, paper 2: simulation and validation of tool influence functions on edges. Opt Express 21(1):370–381

    Article  Google Scholar 

  40. Kim DW, Park WH, Kim SW, Burge JH (2009) Parametric modeling of edge effects for polishing tool influence functions. Opt Express 17(7):5656–5665

    Article  Google Scholar 

  41. Kim DW, Kim SW (2005) Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes. Opt Express 13(3):910–917

    Article  Google Scholar 

  42. Alberto CD, Jorge GG, Maria PL, Alberto AC, Jorge CC, Carlos RS (2004) Edge effects with the Preston equation for a circular tool and workpiece. Appl Opt 43(6):1250–1254

    Article  Google Scholar 

  43. Feng YP, Cheng HB, Wang T, Dong ZC, Tam HY (2014) Optimal strategy for fabrication of large aperture aspheric surfaces. Appl Opt 53(1):147–155

    Article  Google Scholar 

  44. Lee Y (2011) Evaluating subsurface damage in optical glasses. J Eur Opt Soc Rapid Publ 6:11001

    Google Scholar 

  45. Roswell A, Xi FJ, Liu G (2006) Modelling and analysis of contact stress for automated polishing. Int J Mach Tools Manuf 46(3):424–435

    Article  Google Scholar 

  46. Cheung C, Kong L, Ho L, To S (2011) Modelling and simulation of structure surface generation using computer controlled ultra-precision polishing. Precis Eng 35(4):574–590

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobo Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, H. (2015). Prediction on Dwell Effects and Nonlinear Pressure Distribution. In: Pose-varied Multi-axis Optical Finishing Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44182-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44182-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44181-7

  • Online ISBN: 978-3-662-44182-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics