Skip to main content

Conquering the Dynamic Limitation of Velocity

  • Chapter
  • First Online:
  • 407 Accesses

Abstract

Deterministic subaperture optical finishing systems often employ a time-invariant tool influence function (TIF) to figure localized surface errors by varying the tool transverse velocity. With this regime, the finishing efficiency may be not proportional to the increase of removal rate because of the dynamic (i.e., velocity) limitation of the machines. This chapter presented a controllable and time-variant TIF (CTVT) finishing regime and built by series of TIF spot experiments, in which the TIF also serves as a variable to control the material removal when the desired transverse velocity of the machine exceeds the allowed maximal velocity. Compared with other methods, CTVT has better performance with respect to the convergence rate, finishing efficiency, operability, and versatility. Process validations were conducted on a self-developed finishing machine. Without CTVT, the first finishing left a 76 nm dent at central region because of the velocity limitation of turntable. Employing CTVT, the dent was completely removed by the second finishing. CTVT improved convergence rate and finishing efficiency from 0.63 and 0.113 to 0.74 and 0.247, respectively. Another experiment with CTVT and larger removal rate increased convergence rate and finishing efficiency to 0.924 and 0.347.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Moses EI, Campbell JH, Stolz CJ, Wuest CR (2003) The national ignition facility: The world’s largest optics and laser system. In: Proceeding of SPIE, San Jose, pp 1–15

    Google Scholar 

  2. Johns M, Angel JR, Shectman S, Bernstein R, Fabricant DG, McCarthy P, Phillips M (2004) Status of the giant magellan telescope (GMT) project. In: Proceeding of SPIE, Glasgow, pp 441–453

    Google Scholar 

  3. Zimmerman DC (2010) Feasibility studies for the alignment of the Thirty Meter Telescope. Appl Opt 49(18):3485–3498

    Article  Google Scholar 

  4. Gilmore G (2008) European Extremely Large Telescope: some history, and the scientific community’s preferences for wavelength. In: Proceeding of SPIE, Lund, 698607-698607-8

    Google Scholar 

  5. Lowisch M, Kuerz P, Conradi O, Wittich G, Seitz W, Kaiser W (2010) Optics for ASML’s NXE: 3300B platform. In: Proceeding of SPIE, California, 86791H-86791H-9

    Google Scholar 

  6. Matsuyama T, Ishiyama T, Omura Y (2004) Nikon projection lens update. In: Proceeding of SPIE, Berlin, pp 730–741

    Google Scholar 

  7. Daniel M, Burge J (2001) Handbook of optical engineering. CRC Press Publishers, Boca Raton

    Google Scholar 

  8. Kim DW, Kim SW, Burge JH (2009) Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions. Opt Express 17(24):21850–21866

    Article  Google Scholar 

  9. Demmler M, Zeuner M, Luca A, Dunger T, Rost D, Kiontke S, Krüger M (2011) Ion beam figuring of silicon aspheres. In: Proceeding of SPIE, California, 793416-793416-6

    Google Scholar 

  10. Jourdain R, Castelli M, Morantz P, Shore P (2012) Plasma surface figuring of large optical components. In: Proceeding of SPIE, Brussels, 843011-843011-6

    Google Scholar 

  11. Kordonski W, Gorodkin S (2011) Material removal in magnetorheological finishing of optics. Appl Opt 50(14):1984–1994

    Article  Google Scholar 

  12. Kordonski WI, Shorey AB, Tricard M (2006) Magnetorheological jet (MR JetTM) finishing technology. J Fluids Eng 128(1):20–26

    Article  Google Scholar 

  13. Jones RA (1977) Optimization of computer controlled polishing. Appl Opt 16(1):218–224

    Article  Google Scholar 

  14. Cheng HB, Feng ZJ, Cheng K, Wang YW (2005) Design of a six-axis high precision machine tool and its application in machining aspherical optical mirrors. Int J Mach Tools Manuf 45(9):1085–1094

    Article  Google Scholar 

  15. Shorey AB, Jacobs SD, Kordonski WI, Gans RF (2001) Experiments and observations regarding the mechanisms of glass removal in magnetorheological finishing. Appl Opt 40(1):20–33

    Article  Google Scholar 

  16. Kordonski W, Gorodkin S (2011) Material removal in magnetorheological finishing of optics. Appl Opt 50(14):1984–1994

    Article  Google Scholar 

  17. Lambropoulos JC, Miao C, Jacobs SD (2010) Magnetic field effects on shear and normal stresses in magnetorheological finishing. Opt Express 18(19):19713–19723

    Article  Google Scholar 

  18. Shanbhag PM, Feinberg MR, Sandri G, Horenstein MN, Bifano TG (2000) Ion-beam machining of millimeter scale optics. Appl Opt 39(4):599–611

    Article  Google Scholar 

  19. Walker D, Brooks D, King A, Freeman R, Morton R, McCavana G, Kim SW (2003) The ‘Precessions’ tooling for polishing and figuring flat, spherical and aspheric surfaces. Opt Express 11(8):958–964

    Article  Google Scholar 

  20. Kim DW, Kim SW (2005) Static tool influence function for fabrication simulation of hexagonal mirror segments for extremely large telescopes. Opt Express 13(3):910–917

    Google Scholar 

  21. Kordonski W, Shorey AB, Sekeres A (2004) New magnetically assisted finishing method: material removal with magnetorheological fluid jet. In: Proceeding of SPIE, California, pp 107–114

    Google Scholar 

  22. Wang T, Cheng HB, Dong ZC, Tam HY (2013) Removal character of vertical jet polishing with eccentric rotation motion using magnetorheological fluid. J Mater Process Technol 213(9):1532–1537

    Article  Google Scholar 

  23. Aikens D, DeGroote JE, Youngworth RN (2008) Specification and control of mid-spatial frequency wavefront errors in optical systems. In: Optical fabrication and testing, Rochester, OTuA1

    Google Scholar 

  24. Liao D, Yuan Z, Tang C, Xie R, Chen X (2013) Mid-Spatial Frequency Error (PSD-2) of optics induced during CCOS and full-aperture polishing. J Eur Opt Soc-Rapid Publ 8:13031

    Article  Google Scholar 

  25. Lawson JK, Aikens DM, English RE, Wolfe CR (1996) Power spectral density specifications for high-power laser systems. In: Proceeding of SPIE, Glasgow, 345–356

    Google Scholar 

  26. Nelson JD, Gould A, Klinger C, Mandina M (2011) High frequency and random motion rapidly smoothes optical surfaces. Laser Focus World 47(10):71–74

    Google Scholar 

  27. Dai Y, Hu H, Peng X, Wang J, Shi F (2011) Research on error control and compensation in magnetorheological finishing. Appl Opt 50(19):3321–3329

    Article  Google Scholar 

  28. Song C, Dai Y, Peng X (2010) Model and algorithm based on accurate realization of dwell time in magnetorheological finishing. Appl Opt 49(19):3676–3683

    Article  Google Scholar 

  29. Walker DD, Beaucamp A, Doubrovski V, Dunn C, Evans R, Freeman R, McCavana G, Morton R, Riley D, Simms J (2006) Commissioning of the first precessions 1.2-m CNC polishing machines for large optics. In: Proceeding of SPIE, Glasgow, 62880P-62880P-8

    Google Scholar 

  30. Yu G, Walker D, Li H (2012) Implementing a grolishing process in Zeeko IRP machines. Appl Opt 51(27):6637–6640

    Article  Google Scholar 

  31. Kim DW, Kim SW, Burge JH (2009) Non-sequential optimization technique for a computer controlled optical surfacing process using multiple tool influence functions. Opt Express 17(14):21850–21866

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haobo Cheng .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheng, H. (2015). Conquering the Dynamic Limitation of Velocity. In: Pose-varied Multi-axis Optical Finishing Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44182-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44182-4_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44181-7

  • Online ISBN: 978-3-662-44182-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics