Bone Mineral Density and Quantitative Imaging

  • Giuseppe Guglielmi
  • Fabio Ferrari
  • Alberto Bazzocchi


Quantitative imaging methods are widely used in the evaluation of bone metabolic status and to diagnose and to manage diseases of huge epidemiological, clinical, and economic impact, such as osteoporosis. Bone mineral density (BMD) is still the major factor in clinical determination of bone strength. The central technique in the imaging flowchart of metabolic bone diseases is dual-energy X-ray absorptiometry (DXA). Special consideration also deserves quantitative ultrasound (QUS), due to its relationships with fracture risks and to specific advantages. Quantitative computed tomography (QCT) and peripheral QCT equipments are also promising tools for the analysis of bone density and bone architectural properties and to bring such advanced analysis near clinical practice in the next future. On the other hand, magnetic resonance (MR)-based techniques are still confined to the research field. In quantitative imaging, the execution of the examination is particularly important because (a) the key point of the scan is the “measurement” and not qualitative evaluation of images; therefore, the evaluation is mainly given on the basis of acquired measures, and (b) it is often difficult to understand the presence and effect of errors after the results (measures) are obtained. This chapter describes and analyzes potential pitfalls in the execution and interpretation of quantitative imaging techniques involved in the field of bone metabolic diseases.


Bone Mineral Density Trabecular Bone Bone Mineral Density Measurement Quantitative Compute Tomography Broadband Ultrasound Attenuation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Bone mineral density


Broadband ultrasound attenuation


Computed tomography


Dual-energy X-ray absorptiometry


High-resolution pQCT


Peripheral QCT


Quantitative computed tomography


Quantitative ultrasound


  1. Ashe MC, Khan KM, Kontulainen SA et al (2006) Accuracy of pQCT for evaluating the aged human radius: an ashing, histomorphometry and failure load investigation. Osteoporos Int 17:1241–1251PubMedCrossRefGoogle Scholar
  2. Banse X, Devogelaer JP, Grynpas M (2002) Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone 30:829–835PubMedCrossRefGoogle Scholar
  3. Barden HS, Markwardt P, Payne R et al (2003) Automated assessment of exclusion criteria for DXA lumbar spine scans. J Clin Densitom 6:401–410PubMedCrossRefGoogle Scholar
  4. Barkmann R, Gluer C (1999) Error sources in quantitative ultrasound measurement. In: Njeh CF, Hans D, Fuerst T, Gluer CC, Genant HK (eds) Quantitative ultrasound: assessment of osteoporosis and bone status. Dunitz, London, pp 101–108Google Scholar
  5. Bazzocchi A, Ferrari F, Diano D et al (2012) Incidental findings with dual-energy X-ray absorptiometry: spectrum of possible diagnoses. Calcif Tissue Int 91:149–156PubMedCrossRefGoogle Scholar
  6. Burge R, Dawson-Hughes B, Solomon DH et al (2007) Incidence and economic burden of osteoporosis-related fractures in the United States, 2005–2025. J Bone Miner Res 22:465–475PubMedCrossRefGoogle Scholar
  7. Burghardt AJ, Buie HR, Laib A et al (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47:519–528PubMedCentralPubMedCrossRefGoogle Scholar
  8. Cawkwell GD (1998) Movement artifact and dual X-ray absorptiometry. J Clin Densitom 1:141–147CrossRefGoogle Scholar
  9. Chappard C, Berger G, Roux C et al (1999) Ultrasound measurement on the calcaneus: influence of immersion time and rotation of the foot. Osteoporos Int 9:318–326PubMedCrossRefGoogle Scholar
  10. Chappard C, Camus E, Lefebvre F et al (2000) Evaluation of error bounds on calcaneal speed of sound caused by surrounding soft tissue. J Clin Densitom 3:121–131PubMedCrossRefGoogle Scholar
  11. Damilakis J, Guglielmi G (2010) Quality assurance and dosimetry in bone densitometry. Radiol Clin North Am 48:629–640PubMedCrossRefGoogle Scholar
  12. Dasher LG, Newton CD, Lenchik L (2010) Dual X-ray absorptiometry in today’s clinical practice. Radiol Clin North Am 48:541–560PubMedCrossRefGoogle Scholar
  13. Davies KM, Stegman MR, Heaney RP et al (1996) Prevalence and severity of vertebral fracture: the Saunders County Bone Quality Study. Osteoporos Int 6:160–165PubMedCrossRefGoogle Scholar
  14. Diessel E, Fuerst T, Njeh CF et al (2000) Evaluation of a new body composition phantom for quality control and cross-calibration of DXA devices. J Appl Physiol 89:599–605PubMedGoogle Scholar
  15. Dontas IA, Yiannakopoulos CK (2007) Risk factors and prevention of osteoporosis-related fractures. J Musculoskelet Neuronal Interact 7:68–272Google Scholar
  16. Dunnill MS, Anderson JA, Whitehead R (1967) Quantitative histological studies on age changes in bone. J Pathol Bacteriol 94:275–291PubMedCrossRefGoogle Scholar
  17. Eastell R, Cedel SL, Wahner HW et al (1991) Classification of vertebral fractures. J Bone Miner Res 6:207–215PubMedCrossRefGoogle Scholar
  18. El Maghraoui A, Roux C (2008) DXA scanning in clinical practice. QJM 101:605–617PubMedCrossRefGoogle Scholar
  19. Evans WD, Jones EA, Owen GM (1995) Factors affecting the in vivo precision of broad-band ultrasonic attenuation. Phys Med Biol 40:137–151PubMedCrossRefGoogle Scholar
  20. Gluer CC (1997) Quantitative ultrasound techniques for the assessment of osteoporosis: expert agreement on current status. The International Quantitative Ultrasound Consensus Group. J Bone Miner Res 12:1280–1288PubMedCrossRefGoogle Scholar
  21. Gluer CC (2008) A new quality of bone ultrasound research. IEEE Trans Ultrason Ferroelectr Freq Control 55:1524–1528PubMedCrossRefGoogle Scholar
  22. Griffith JF, Genant HK (2011) New imaging modalities in bone. Curr Rheumatol Rep 13:241–250PubMedCentralPubMedCrossRefGoogle Scholar
  23. Guglielmi G, de Terlizzi F (2009) Quantitative ultrasound in the assessment of osteoporosis. Eur J Radiol 71:425–431PubMedCrossRefGoogle Scholar
  24. Guglielmi G, Grimston SK, Fischer KC et al (1994) Osteoporosis: diagnosis with lateral and posteroanterior dual x-ray absorptiometry compared with quantitative CT. Radiology 192:845–850PubMedCrossRefGoogle Scholar
  25. Guglielmi G, Njeh CF, de Terlizzi F et al (2003) Phalangeal quantitative ultrasound, phalangeal morphometric variables, and vertebral fracture discrimination. Calcif Tissue Int 72:469–477PubMedCrossRefGoogle Scholar
  26. Guglielmi G, Adams J, Link TM (2009) Quantitative ultrasound in the assessment of skeletal status. Eur Radiol 19:1837–1848PubMedCrossRefGoogle Scholar
  27. Guglielmi G, de Terlizzi F, Scalzo G et al (2010a) Cortical thickness and medullary canal dimensions of the bone phalanx are predicted by quantitative ultrasound parameters. J Clin Densitom 13:219–227PubMedCrossRefGoogle Scholar
  28. Guglielmi G, Scalzo G, de Terlizzi F et al (2010b) Quantitative ultrasound in osteoporosis and bone metabolism pathologies. Radiol Clin North Am 48:577–588PubMedCrossRefGoogle Scholar
  29. Guglielmi G, Muscarella S, Bazzocchi A (2011) Integrated imaging approach to osteoporosis: state-of-the-art review and update. RadioGraphics 31:1343–1364PubMedCrossRefGoogle Scholar
  30. Guglielmi G, Damilakis J, Solomou G et al (2012) Quality assurance of imaging techniques used in the clinical management of osteoporosis. Radiol Med 117(8):1347–1354Google Scholar
  31. Hans D, Schott AM, Arlot ME et al (1995) Influence of anthropometric parameters on ultrasound measurements of os calcis. Osteoporos Int 5:371–376PubMedCrossRefGoogle Scholar
  32. Hans D, Dargent-Molina P, Schott AM et al (1996) Ultrasonographic heel measurements to predict hip fracture in elderly women: the EPIDOS prospective study. Lancet 348:511–514PubMedCrossRefGoogle Scholar
  33. Hauache OM, Vieira JG, Alonso G et al (2000) Increased hip bone mineral density in a woman with gluteal silicon implant. J Clin Densitom 3:391–393PubMedCrossRefGoogle Scholar
  34. Iki M, Kajita E, Mitamura S et al (1999) Precision of quantitative ultrasound measurement of the heel bone and effects of ambient temperature on the parameters. Osteoporos Int 10:462–467PubMedCrossRefGoogle Scholar
  35. Jacobson JA, Jamadar DA, Hayes CW (2000) Dual X-ray absorptiometry: recognizing image artifacts and pathology. AJR Am J Roentgenol 174:1699–1705PubMedCrossRefGoogle Scholar
  36. Johansen A, Stone MD (1997) The effect of ankle oedema on bone ultrasound assessment at the heel. Osteoporos Int 7:44–47PubMedCrossRefGoogle Scholar
  37. Kanis JA (2002) Diagnosis of osteoporosis and assessment of fracture risk. Lancet 359:1929–1936PubMedCrossRefGoogle Scholar
  38. Kanis JA, Johnell O (2005) Requirements for DXA for the management of osteoporosis in Europe. Osteoporos Int 16:229–238PubMedCrossRefGoogle Scholar
  39. Kanis JA, Melton LJ 3rd, Christiansen C et al (1994) The diagnosis of osteoporosis. J Bone Miner Res 9:1137–1141PubMedCrossRefGoogle Scholar
  40. Khan AA, Bachrach L, Brown JP et al (2004) Standards and guidelines for performing central dual-energy x-ray absorptiometry in premenopausal women, men, and children. J Clin Densitom 7:51–64PubMedCrossRefGoogle Scholar
  41. Kotzki PO, Buyck D, Hans D et al (1994) Influence of fat on ultrasound measurements of the os calcis. Calcif Tissue Int 54:91–95PubMedCrossRefGoogle Scholar
  42. Krieg MA, Barkmann R, Gonnelli S et al (2008) Quantitative ultrasound in the management of osteoporosis: the 2007 ISCD Official Positions. J Clin Densitom 11:163–187PubMedCrossRefGoogle Scholar
  43. Krug R, Burghardt AJ, Majumdar S et al (2010) High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am 48:601–621PubMedCentralPubMedCrossRefGoogle Scholar
  44. Lang TF (2010) Quantitative computed tomography. Radiol Clin North Am 48:589–600PubMedCrossRefGoogle Scholar
  45. Laugier P, Giat P, Berger G (1994) Broadband ultrasonic attenuation imaging: a new imaging technique of the os calcis. Calcif Tissue Int 54:83–86PubMedCrossRefGoogle Scholar
  46. Lenchik L, Sartoris DJ (1997) Current concepts in osteoporosis. AJR Am J Roentgenol 168:905–911PubMedCrossRefGoogle Scholar
  47. Lenchik L, Rochmis P, Sartoris DJ (1998) Optimized interpretation and reporting of dual X-ray absorptiometry (DXA) scans. AJR Am J Roentgenol 171:1509–1520PubMedCrossRefGoogle Scholar
  48. Lewiecki EM, Binkley N, Petak SM (2006) DXA quality matters. J Clin Densitom 9:388–392PubMedCrossRefGoogle Scholar
  49. Libber J, Binkley N, Krueger D (2012) Clinical observations in total body DXA: technical aspects of positioning and analysis. J Clin Densitom 15:282–289PubMedCrossRefGoogle Scholar
  50. Link TM (2012) Osteoporosis imaging: state of the art and advanced imaging. Radiology 263:3–17PubMedCentralPubMedCrossRefGoogle Scholar
  51. Maggio D, McCloskey EV, Camilli L et al (1998) Short-term reproducibility of proximal femur bone mineral density in the elderly. Calcif Tissue Int 63:296–299PubMedCrossRefGoogle Scholar
  52. Moyad MA (2003) Osteoporosis: a rapid review of risk factors and screening methods. Urol Oncol 21:375–379PubMedCrossRefGoogle Scholar
  53. Mueller TL, Stauber M, Kohler T et al (2009) Non-invasive bone competence analysis by high-resolution pQCT: an in vitro reproducibility study on structural and mechanical properties at the human radius. Bone 44:364–371PubMedCrossRefGoogle Scholar
  54. Njeh CF, Hans D, Li J et al (2000) Comparison of six calcaneal quantitative ultrasound devices: precision and hip fracture discrimination. Osteoporos Int 11:1051–1062PubMedCrossRefGoogle Scholar
  55. Njeh CF, Chen MB, Fan B et al (2001) Evaluation of a gel-coupled quantitative ultrasound device for bone status assessment. J Ultrasound Med 20:1219–1228PubMedGoogle Scholar
  56. Pocock NA, Babichev A, Culton N et al (2000) Temperature dependency of quantitative ultrasound. Osteoporos Int 11:316–320PubMedCrossRefGoogle Scholar
  57. Rosenthall L (1997) Influence of bone quality on precision of calcaneal ultrasonometry. Calcif Tissue Int 61:139–141PubMedCrossRefGoogle Scholar
  58. Rothney MP, Brychta RJ, Schaefer EV et al (2009) Body composition measured by dual-energy X-ray absorptiometry half-body scans in obese adults. Obesity (Silver Spring) 17:1281–1286Google Scholar
  59. Staron RB, Greenspan R, Miller TT et al (1999) Computerized bone densitometric analysis: operator-dependent errors. Radiology 211:467–470PubMedCrossRefGoogle Scholar
  60. Theodorou DJ, Theodorou SJ (2002) Dual-energy X-ray absorptiometry in clinical practice: application and interpretation of scans beyond the numbers. Clin Imaging 26:43–49PubMedCrossRefGoogle Scholar
  61. U.S. Preventive Services Task Force (2011) Screening for osteoporosis: U.S. preventive services task force recommendation statement. Ann Intern Med 154:356–364CrossRefGoogle Scholar
  62. Watts NB (2004) Fundamentals and pitfalls of bone densitometry using dual-energy X-ray absorptiometry (DXA). Osteoporos Int 15:847–854PubMedCrossRefGoogle Scholar
  63. Yu W, Gluer CC, Fuerst T et al (1995) Influence of degenerative joint disease on spinal bone mineral measurements in postmenopausal women. Calcif Tissue Int 57:169–174PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Giuseppe Guglielmi
    • 1
    • 2
  • Fabio Ferrari
    • 3
  • Alberto Bazzocchi
    • 3
    • 4
  1. 1.Department of RadiologyUniversity of FoggiaFoggiaItaly
  2. 2.Department of RadiologyScientific Institute “Casa Sollievo della Sofferenza” HospitalSan Giovanni RotondoItaly
  3. 3.Imaging Division, Clinical Department of Radiological and Histocytopathological SciencesSant’Orsola – Malpighi Hospital, University of BolognaBolognaItaly
  4. 4.Department of Diagnostic and Interventional Radiology“Rizzoli” Orthopaedic InstituteBolognaItaly

Personalised recommendations