Skip to main content

Brain

  • Chapter
  • First Online:
Pitfalls in Diagnostic Radiology

Abstract

False-negative perceptual pitfalls are important in neuroradiology, with commonly missed lesions lurking in anatomical blind spots such as the cerebral sulci, dural sinuses, cavernous sinuses, orbits, and the skull base. These review areas should be kept in mind, as should the differential diagnosis gamuts for bilaterally symmetrical brain lesions. Similarly, false-positive pitfalls from technical artifacts should be considered, including understanding the basic physics principles and limitations of magnetic resonance imaging (MRI), computed tomography (CT) and MR angiography, diffusion-weighted imaging (DWI), MR spectroscopy, and perfusion CT and MRI. Examples such as the complex T2 effects on DWI, the overlapping appearances of blood products on MRI, and atypical appearance in all diseases should be taken into account. Spinal cord imaging and pediatric neuroimaging have their own characteristics and pitfalls, and knowledge of disease patterns, non-accidental injury, and their mimics is essential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

Two-dimensional

3D:

Three-dimensional

ADC:

Apparent diffusion coefficient

CBF:

Cerebral blood flow

CBV:

Cerebral blood volume

CSF:

Cerebrospinal fluid

CT:

Computed tomography

CTA:

Computed tomography angiography

CTV:

Computed tomography venography

CVT:

Cerebral venous thrombosis

DSA:

Digital subtraction angiography

DTI:

Diffusion tensor imaging

DWI:

Diffusion-weighted imaging

EPI:

Echo-planar imaging

FLAIR:

Fluid-attenuated inversion recovery

GRE:

Gradient-recalled echo

MIP:

Maximum intensity projection

MPR:

Multi-planar reconstruction

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

MRS:

Magnetic resonance spectroscopy

MRV:

Magnetic resonance venography

MTT:

Mean transit time

PCT:

Perfusion CT

PWI:

Perfusion-weighted imaging

SAH:

Subarachnoid hemorrhage

TOF:

Time of flight

References

  • Albers GW, Thijs VN, Wechsler L et al (2006) For the DEFUSE investigators. Magnetic resonance imaging profiles predict clinical response to early reperfusion: the diffusion and perfusion imaging evaluation for understanding stroke evolution (DEFUSE) study. Ann Neurol. http://www.ncbi.nlm.nih.gov/pubmed/17066483. 60:508–517

  • Anderson CM, Saloner D, Tsuruda JS et al (1990) Artifacts in maximum-intensity-projection display of MR angiograms. AJR Am J Roentgenol 154:623–629

    CAS  PubMed  Google Scholar 

  • Anderson CM, Saloner D, Lee RE et al (1992) Assessment of carotid artery stenosis by MR angiography: comparison with x-ray angiography and color-coded Doppler ultrasound. AJNR Am J Neuroradiol 13:989–1003; discussion 5–8

    CAS  PubMed  Google Scholar 

  • Anzalone N, Righi C, Simionato F et al (2000) Three-dimensional time-of-flight MR angiography in the evaluation of intracranial aneurysms treated with Guglielmi detachable coils. AJNR Am J Neuroradiol 21:746–752

    CAS  PubMed  Google Scholar 

  • Aronen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histological findings. Radiology 191:41–51

    CAS  PubMed  Google Scholar 

  • Ayanzen RH, Bird CR, Keller PJ et al (2000) Cerebral MR venography: normal anatomy and potential diagnostic pitfalls. AJNR Am J Neuroradiol 21:74–78

    CAS  PubMed  Google Scholar 

  • Bahrami S, Yim CM (2009) Quality initiatives: blind spots at brain imaging. RadioGraphics 29:1877–1896

    PubMed  Google Scholar 

  • Bancroft LW, Bridges MD (2008) MRI normal variants and pitfalls. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Barber PA, Davis SM, Darby DG et al (1999) Absent middle cerebral artery flow predicts the presence and evolution of the ischemic penumbra. Neurology 52:1125–1132

    CAS  PubMed  Google Scholar 

  • Bash S, Villablanca JP, Jahan R et al (2005) Intracranial vascular stenosis and occlusive disease: evaluation with CT angiography, MR angiography, and digital subtraction angiography. AJNR Am J Neuroradiol 26:1012–1021

    PubMed  Google Scholar 

  • Basser PJ, Pajevic S, Pierpaoli C et al (2000) In vivo fiber tractography using DT-MRI data. Magn Reson Med 44:625–632

    CAS  PubMed  Google Scholar 

  • Berlin L (2001) Defending the “missed” radiographic diagnosis. AJR Am J Roentgenol 176:317–322

    CAS  PubMed  Google Scholar 

  • Berlin L, Hendrix RW (1998) Perceptual errors and negligence. AJR Am J Roentgenol 170:863–867

    CAS  PubMed  Google Scholar 

  • Best AC, Acosta NR, Fraser JE (2012) Recognizing false ischemic penumbras in CT brain perfusion studies. RadioGraphics 32:1179–1196

    PubMed  Google Scholar 

  • Borm W, Mohr K, Hassepass U et al (2004) Spinal hematoma unrelated to previous surgery: analysis of 15 consecutive cases treated in a single institution within a 10-year period. Spine 29:E555–E561

    PubMed  Google Scholar 

  • Boye S, Schumacher J (2009) Diagnosis of vertebral canal haematoma by myelography and spiral computer tomography in a patient with an implantable cardioverter-defibrillator contraindicating magnetic resonance imaging. Br J Anaesth 103:137–138

    CAS  PubMed  Google Scholar 

  • Bozzao A, Floris R, Fasoli F et al (2003) Cerebrospinal fluid changes after intravenous injection of gadolinium chelate: assessment by FLAIR MR imaging. Eur Radiol 13:592–597

    PubMed  Google Scholar 

  • Bracken J, Barnacle A, Ditchfeld M (2012) Potential pitfalls in imaging of paediatric cerebral sinovenous thrombosis. Pediatr Radiol 43:219–231

    PubMed  Google Scholar 

  • Bradley WG (1995) MR angiography of the central nervous system. Basic flow phenomena. MRI Clin N Am 3:375–390

    CAS  Google Scholar 

  • Bronskill MJ, McVeigh ER, Kucharczyk W et al (1988) Syrinx-like artifacts on MR images of the spinal cord. Radiology 166:485–488

    CAS  PubMed  Google Scholar 

  • Bulakbasi N, Guvenc I, Onguru O et al (2004) The added value of the apparent diffusion coefficient calculation to magnetic resonance imaging in the differentiation and grading of malignant brain tumors. J Comput Assist Tomogr 28:735–746

    PubMed  Google Scholar 

  • Caldemeyer KS, Carrico JB, Mathews VP (1998) The radiology and embryology of anomalous arteries of the head and neck. AJR Am J Roentgenol 170:197–203

    CAS  PubMed  Google Scholar 

  • Casey SO, Alberico RA, Patel M et al (1996) Cerebral CT venography. Radiology 198:163–170

    CAS  PubMed  Google Scholar 

  • Cheong LHD, Lim TCC, Koh TS (2004) Dynamic contrast-enhanced CT of intracranial meningioma: comparison of distributed and compartmental tracer kinetic models—initial results. Radiology 232:921–930

    Google Scholar 

  • Connor SE, Jarosz (2002) Magnetic resonance imaging of cerebral venous sinus thrombosis. Clin Radiol 57:449–61.

    Google Scholar 

  • Cottier JP, Bleuzen-Couthon A, Gallas S et al (2003) Intracranial aneurysms treated with Guglielmi detachable coils: is contrast material necessary in the follow-up with 3D time-of-flight MR angiography? AJNR Am J Neuroradiol 24:1797–1803

    PubMed  Google Scholar 

  • Davis SM, Donnan GA, Parsons MW et al (2008) EPITHET investigators Effects of alteplase beyond 3 h after stroke in the Echoplanar Imaging Thrombolytic Evaluation Trial (EPITHET): a placebo-controlled randomised trial. Lancet Neurol 7:299–309

    PubMed  Google Scholar 

  • De Marco JK, Schonfeld S, Wesbey G (1996) Can noninvasive studies replace conventional angiography in the preoperative evaluation of carotid stenosis? Neuroimaging Clin N Am 6:911–929

    PubMed  Google Scholar 

  • Deliganis AV, Fisher DJ, Lam AM et al (2001) Cerebrospinal fluid signal intensity increase on FLAIR MR images in patients under general anesthesia: the role of supplemental O2. Radiology 218:152–156

    CAS  PubMed  Google Scholar 

  • Dormont D, Sag K, Biondi A et al (1995) Gadolinium-enhanced MR of chronic dural sinus thrombosis. AJNR Am J Neuroradiol 16:1347–1352

    CAS  PubMed  Google Scholar 

  • Erly WK, Berger WB, Krupinski E et al (2002) Radiology resident evaluation of head CT scan orders in the emergency department. AJNR Am J Neuroradiol 23:103–107

    PubMed  Google Scholar 

  • Erly WK, Ashdown BC, Lucio RW et al (2003) Evaluation of emergency CT scans of the head: is there a community standard? AJR Am J Roentgenol 180:1727–1730

    PubMed  Google Scholar 

  • Fellner FA, Fellner C, Aichner FT et al (2005) Importance of T2*-weighted gradient-echo MRI for diagnosis of cortical vein thrombosis. Eur J Radiol 56:235–239

    PubMed  Google Scholar 

  • Fernando S, Obaldo RE, Walsh IR et al (2008) Neuroimaging of nonaccidental head trauma: pitfalls and controversies. Pediatr Radiol 38:827–838

    PubMed  Google Scholar 

  • Filippi CG, Schneider B, Burbank HN et al (2008) Discrepancy rates of radiology resident interpretations of on-call neuroradiology MR imaging studies. Radiology 249:972–979

    PubMed  Google Scholar 

  • Flacke S, Urbach H, Keller E et al (2000) Middle cerebral artery (MCA) susceptibility sign at susceptibility-based perfusion MR imaging: clinical importance and comparison with hyperdense MCA sign at CT. Radiology 215:476–482

    CAS  PubMed  Google Scholar 

  • Funaki B, Szymski GX, Rosenblum JD (1997) Significant on-call misses by radiology residents interpreting computed tomographic studies: perception versus cognition. Emerg Radiol 4:290–294

    Google Scholar 

  • Furst G, Hofer M, Sitzer M et al (1995) Factors influencing flow-induced signal loss in MR angiography: an in vitro study. J Comput Assist Tomogr 19:692–699

    CAS  PubMed  Google Scholar 

  • Given CA, Burdette JH, Elster AD et al (2003) Pseudo-subarachnoid hemorrhage: a potential imaging pitfall associated with diffuse cerebral edema. AJNR Am J Neuroradiol 24:254–256

    PubMed  Google Scholar 

  • Golay X, Hendrikse J, Lim CCT (2004) Perfusion imaging using arterial spin labeling. Top Magn Reson Imaging 15:10–27

    PubMed  Google Scholar 

  • González RG, Schaefer PW, Buonanno FS et al (1999) Diffusion-weighted MR imaging: diagnostic accuracy in patients imaged within 6 hours of stroke symptom onset. Radiology 210:155–162

    PubMed  Google Scholar 

  • Gutierrez LG, Rovira A, Portela LA et al (2010) CT and MR in non-neonatal hypoxic-ischemic encephalopathy: radiological findings with pathophysiological correlations. Neuroradiology 52:949–976

    PubMed  Google Scholar 

  • Hacklander T, Reichenbach JR, Hofer M, Modder U (1996) Measurement of cerebral blood volume via the relaxing effect of low-dose gadopentetate dimeglumine during bolus transit. AJNR Am J Neuroradiol 17:821–830

    CAS  PubMed  Google Scholar 

  • Healy JF, Nichols C (2002) Polycythemia mimicking venous sinus thrombosis. AJNR Am J Neuroradiol 23:1402–1403

    PubMed  Google Scholar 

  • Hegde AN, Mohan S, Lath N et al (2011) Differential diagnosis for bilateral abnormalities of the basal ganglia and thalamus. RadioGraphics 31:5–30

    PubMed  Google Scholar 

  • Heier LA, Bauer CJ, Schwartz L et al (1989) Large Virchow-Robin spaces: MR-clinical correlation. AJNR Am J Neuroradiol 10:929–936

    CAS  PubMed  Google Scholar 

  • Heiserman JE, Drayer BP, Keller PJ (1992) Intracranial vascular stenosis and occlusion: evaluation with three-dimensional time-of-flight MR angiography. Radiology 185:667–673

    CAS  PubMed  Google Scholar 

  • Hirai T, Korogi Y, Ono K et al (2002) Prospective evaluation of suspected stenoocclusive disease of the intracranial artery: combined MR angiography and CT angiography compared with digital subtraction angiography. AJNR Am J Neuroradiol 23:93–101

    PubMed  Google Scholar 

  • Hiwatashi A, Kinoshita T, Moritani T et al (2003) Hypointensity on diffusion-weighted MRI of the brain related to T2 shortening and susceptibility effects. AJR Am J Roentgenol 181:1705–1709

    PubMed  Google Scholar 

  • Hochberg AR, Rojas R, Thomas AJ et al (2011) Accuracy of on-call resident interpretation of CT angiography for intracranial aneurysm in subarachnoid haemorrhage. AJR Am J Roentgenol 197:1436–1441

    PubMed  Google Scholar 

  • Holodny AI, Schwartz TH, Ollenschleger M et al (2001) Tumor involvement of the corticospinal tract: diffusion magnetic resonance tractography with intraoperative correlation. J Neurosurg 95:1082

    CAS  PubMed  Google Scholar 

  • Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 49:223–232

    CAS  PubMed  Google Scholar 

  • Hymel KP, Rumack CM, Hay TC et al (1997) Comparison of intracranial computed tomographic (CT) findings in pediatric abusive and accidental head trauma. Pediatr Radiol 27:743–747

    CAS  PubMed  Google Scholar 

  • Ishimaru H, Morikawa M, Iwanaga S et al (2001) Differentiation between high-grade glioma and metastatic brain tumor using single voxel proton MR spectroscopy. Eur Radiol 11:1784–1791

    CAS  PubMed  Google Scholar 

  • Kahara VJ, Seppanen SK, Ryymin PS et al (1999) MR angiography with three-dimensional time-of-flight and targeted maximum-intensity-projection reconstructions in the follow-up of intracranial aneurysms embolized with Guglielmi detachable coils. AJNR Am J Neuroradiol 20:1470–1475

    CAS  PubMed  Google Scholar 

  • Kaminogo M, Yonekura M, Shibata S (2003) Incidence and outcome of multiple intracranial aneurysms in a defined population. Stroke 34:16–21

    PubMed  Google Scholar 

  • Kamran S, Bates V, Bakshi R et al (2000) Significance of hyperintense vessels on FLAIR MRI in acute stroke. Neurology 55:265–269

    CAS  PubMed  Google Scholar 

  • Keedy A, Soares B, Wintermark M (2012) A pictorial essay of brain perfusion-CT: not every abnormality is a stroke! J Neuroimaging 22:e20–e33

    PubMed  Google Scholar 

  • Kocaoglu M, Bulakbasi N (2009) Common pitfalls in paediatric imaging: head and spine. Pediatr Radiol 39(Suppl 3):347–355

    PubMed  Google Scholar 

  • Koontz NA, Gunderman RB (2008) Gestalt theory: implications of radiology education. AJR Am J Roentgenol 190:1156–1160

    PubMed  Google Scholar 

  • Krabbe K, Gideon P, Wagn P et al (1997) MR diffusion imaging of human intracranial tumours. Neuroradiology 39:483–489

    CAS  PubMed  Google Scholar 

  • Lal NR, Eldevik OP, Murray UM et al (2000) Clinical consequences of misinterpretations of neurologic CT scans by on-call radiology residents. AJNR Am J Neuroradiol 21:124–129

    CAS  PubMed  Google Scholar 

  • Latchaw RE, Alberts MJ, Michael HL et al (2009) Recommendations for imaging of acute ischemic stroke: a scientific statement from the American Heart Association. Stroke 40:3646–3678

    PubMed  Google Scholar 

  • Laundre BJ, Jellison BJ, Badie B et al (2005) Diffusion tensor imaging of the corticospinal tract before and after mass resection as correlated with clinical motor findings: preliminary data. AJNR Am J Neuroradiol 26:791–796

    PubMed  Google Scholar 

  • Le AH, Licurse A, Catanzano TM (2007) Interpretation of head CT scans in the emergency department by fellows versus general staff non-neuroradiologists: a closer look at the effectiveness of a quality control program. Emerg Radiol 14:311–316

    PubMed  Google Scholar 

  • Leach JL, Fortuna RB, Jones BV et al (2006) Imaging of cerebral venous thrombosis: current techniques, spectrum of findings, and diagnostic pitfalls. RadioGraphics 26(Suppl 1):S19–S41

    PubMed  Google Scholar 

  • Lebowitz JA, Rofsky NM, Krinsky GA (1997) Gadolinium-enhanced body MR venography with subtraction technique. AJR Am J Roentgenol 169:755–758

    CAS  PubMed  Google Scholar 

  • Lee YJ, Chung TS, Joo JY et al (1999) Suboptimal contrast-enhanced carotid MR angiography from the left brachiocephalic venous stasis. J Magn Reson Imaging 10:503–509

    CAS  PubMed  Google Scholar 

  • Lee VS, Martin DJ, Krinsky GA et al (2000) Gadolinium-enhanced MR angiography: artifacts and pitfalls. AJR Am J Roentgenol 175:197–205

    CAS  PubMed  Google Scholar 

  • Lee CEC, Ng I, Yip CW et al (2005) Imaging collateral circulation: magnetic resonance angiography and perfusion magnetic resonance imaging in 3 T. Arch Neurol 62:492–493

    PubMed  Google Scholar 

  • Lev MH, Farkas J, Gemmete JJ et al (1999) Acute stroke: improved nonenhanced CT detection—benefits of soft-copy interpretation by using variable window width and center level settings. Radiology 213:150–155

    CAS  PubMed  Google Scholar 

  • Levy LM, Di Chiro G, Brooks RA et al (1988) Spinal cord artifacts from truncation errors during MR imaging. Radiology 166:479–483

    CAS  PubMed  Google Scholar 

  • Li Q, Lv F, Li Y et al (2009) Evaluation of 64-section CT angiography for detection and treatment planning of intracranial aneurysms by using DSA and surgical findings. Radiology 252:808–815

    PubMed  Google Scholar 

  • Liang L, Korogi Y, Sugahara T et al (2001) Evaluation of the intracranial dural sinuses with a 3D contrast-enhanced MP-RAGE sequence: prospective comparison with 2D-TOF MR venography and digital subtraction angiography. AJNR Am J Neuroradiol 22:481–492

    CAS  PubMed  Google Scholar 

  • Lim TCC, Roberts TPL, Sitoh YY et al (2003) Rising signal intensity in extra-axial tumors – a potential pitfall in perfusion MR imaging. Singapore Med J 44:526–530

    CAS  PubMed  Google Scholar 

  • Lim CCT, Gan R, Chan CL et al (2009) Severe hypoglycemia associated with an illegal sexual enhancement product adulterated with glibenclamide: MR imaging findings. Radiology 250:193–201

    PubMed  Google Scholar 

  • Lui YW, Tang ER, Allmendinger AM et al (2010) Evaluation of CT perfusion in the setting of cerebral ischemia: patterns and pitfalls. AJNR Am J Neuroradiol 31:1552–1563

    CAS  PubMed  Google Scholar 

  • Maeda M, Tsuchida C (1999) “Ivy sign” on fluid-attenuated inversion-recovery images in childhood moyamoya disease. AJNR Am J Neuroradiol 20:1836–1838

    CAS  PubMed  Google Scholar 

  • Mandell DM, Mikulis DJ, Kiehl TR et al (2012) T2-dark restricted diffusion. Can J Neurol Sci 39:664–666

    CAS  PubMed  Google Scholar 

  • Meyer RE, Nickerson JP, Burbank HN et al (2009) Discrepancy rates of on-call radiology residents’ interpretations of CT angiography studies of the neck and circle of Willis. AJR Am J Roentgenol 193:527–532

    PubMed  Google Scholar 

  • Moller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381

    CAS  PubMed  Google Scholar 

  • Nagar VA, Ye J, Xu M et al (2007) Multivoxel MR spectroscopic imaging – distinguishing intracranial tumours from non-neoplastic disease. Ann Acad Med Singap 36:309–313

    PubMed  Google Scholar 

  • Naidich TP, Righi AM (1995) Neurovascular imaging. Radiol Clin N Am 33:115–166

    CAS  PubMed  Google Scholar 

  • Nelson SJ (2001) Analysis of volume MRI and MR spectroscopic imaging data for the evaluation of patients with brain tumours. Magn Reson Med 46:228–239

    CAS  PubMed  Google Scholar 

  • Ng WH, Lim T (2008) Targeting regions with highest lipid content on MR spectroscopy may improve diagnostic yield in stereotactic biopsy. J Clin Neurosci 15:502–506

    CAS  PubMed  Google Scholar 

  • Nguyen TB, Lum C, Eastwood JD et al (2005) Hyperperfusion on perfusion computed tomography following revascularization for acute stroke. Acta Radiol 46:610–615

    CAS  PubMed  Google Scholar 

  • Noguchi K, Ogawa T, Inugomi A et al (1995) Acute subarachnoid hemorrhage: MR imaging with fluid-attenuated inversion pulse sequences. Radiology 196:773–777

    CAS  PubMed  Google Scholar 

  • Oppenheim C, Domigo V, Gauvrit JY (2005) Subarachnoid hemorrhage as the initial presentation of dural sinus thrombosis. AJNR Am J Neuroradiol 26:614–617

    PubMed  Google Scholar 

  • Ozsarlak O, Van Goethem JW, Maes M et al (2004) MR angiography of the intracranial vessels: technical aspects and clinical applications. Neuroradiology 46:955–972

    PubMed  Google Scholar 

  • Parazzini C, Baldoli C, Scotti G et al (2002) Terminal zones of myelination: MR evaluation of children aged 20–40 months. AJNR Am J Neuroradiol 23:1669–1673

    PubMed  Google Scholar 

  • Parmar H, Lim CCT, Yin H et al (2005) Multi-voxel MR spectroscopic imaging of the brain: utility in clinical setting-initial results. Eur J Radiol 55:401–408

    PubMed  Google Scholar 

  • Peh WCG, Chan JHM (2001) Artifacts in musculoskeletal magnetic resonance imaging: identification and correction. Skelet Radiol 30:179–191

    CAS  Google Scholar 

  • Petersen ET, Lim T, Golay X (2006) Model-free arterial spin labeling quantification approach for perfusion MRI. Magn Reson Med 55:219–232

    PubMed  Google Scholar 

  • Rand SD, Prost R, Haughton V et al (1997) Accuracy of single-voxel proton MR spectroscopy in distinguishing neoplastic from nonneoplastic brain lesions. AJNR Am J Neuroradiol 18:1695–1704

    CAS  PubMed  Google Scholar 

  • Raskin MM (2006) Survival strategies for radiology: some practical tips on how to reduce the risk of being sued and losing. J Am Coll Radiol 3:689–693

    PubMed  Google Scholar 

  • Ravid S, Maytal J (2003) External hydrocephalus: a probable cause for subdural hematoma in infancy. Pediatr Neurol 28:139–141

    PubMed  Google Scholar 

  • Renfrew DL, FrankeN EA, Berbaum KS et al (1992) Error in radiology: classification and lessons in 182 cases presented at a problem case conference. Radiology 183:145–150

    CAS  PubMed  Google Scholar 

  • Renowden S (2004) Cerebral venous sinus thrombosis. Eur Radiol 14:215–226

    PubMed  Google Scholar 

  • Sakamoto S, Kiura Y, Shibukawa M et al (2006) Subtracted 3D CT angiography for evaluation of internal carotid artery aneurysms: comparison with conventional digital subtraction angiography. AJNR Am J Neuroradiol 27:1332–1337

    CAS  PubMed  Google Scholar 

  • Saposnik G, Barinagarrementeria F, Brown RD Jr et al (2011) Diagnosis and management of cerebral venous thrombosis: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 42:1158–1192

    PubMed  Google Scholar 

  • Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217:331–345

    CAS  PubMed  Google Scholar 

  • Seo BR, Pil Joo S, Kim TS (2009) Pitfall of CT angiography for an aneurysm around middle cerebral artery bifurcation. Br J Neurosurg 23:209–210

    PubMed  Google Scholar 

  • Shievink WI, Maya MM, Louy C et al (2008) Diagnostic criteria for spontaneous spinal CSF leaks and intracranial hypotension. AJNR Am J Neuroradiol 29:853–856

    Google Scholar 

  • Silvera S, Oppenheim C, Touzé E et al (2005) Spontaneous intracerebral hematoma on diffusion-weighted images: influence of T2-shine-through and T2-blackout effects. AJNR Am J Neuroradiol 26:236–241

    PubMed  Google Scholar 

  • Stuckey SL, Goh TD, Hefferman T et al (2007) Hyperintensity in the subarachnoid space on FLAIR MRI. AJR Am J Roentgenol 189:913–921

    PubMed  Google Scholar 

  • Sylaja PN, Puetz V, Dzialowski I et al (2008) Prognostic value of CT angiography in patients with suspected vertebrobasilar ischemia. J Neuroimaging 18:46–49

    CAS  PubMed  Google Scholar 

  • Takhtani D (2005) CT neuroangiography: a glance at the common pitfalls and their prevention. AJR Am J Roentgenol 185:772–783

    PubMed  Google Scholar 

  • Tan K, Venketasubramanian N, Hwang CY et al (2008) My headache does not get better when I lie down: spontaneous intracranial hypotension complicated by venous thrombosis. Headache 48:149–152

    PubMed  Google Scholar 

  • Tang PH, Chai J, Chan YH et al (2008) Superior sagittal sinus thrombosis: subtle signs on neuroimaging. Ann Acad Med Singapore 37:1–5

    Google Scholar 

  • Tang PH, CCT Lim (2009) Imaging of accidental paediatric head trauma. Pediatr Radiol 39:438–446

    Google Scholar 

  • Tomandl BF, Kostner NC, Schempershofe M et al (2004) CT angiography of intracranial aneurysms: a focus on postprocessing. RadioGraphics 24:637–655

    PubMed  Google Scholar 

  • Turner PJ, Holdworth G (2011) CT stroke window settings: an unfortunate misleading misnomer? Br J Radiol 84:1061–1066

    CAS  PubMed Central  PubMed  Google Scholar 

  • Venkatesh SK, Gupta RK, Pal L et al (2001) Spectroscopic increase in choline signal is a nonspecific marker for differentiation of infective/inflammatory from neoplastic lesions of the brain. J Magn Reson Imaging 14:8–15

    CAS  PubMed  Google Scholar 

  • Villablanca JP, Jahan R, Hooshi P et al (2002) Detection and characterization of very small cerebral aneurysms by using 2D and 3D helical CT angiography. AJNR Am J Neuroradiol 23:1187–1198

    PubMed  Google Scholar 

  • Vogl TJ, Bergman C, Villringer A et al (1994) Dural sinus thrombosis: value of venous MR angiography for diagnosis and follow-up. AJR Am J Roentgenol 162:1191–1198

    CAS  PubMed  Google Scholar 

  • Waaijer A, van Leeuwen MS, van Osch MJ et al (2007) Changes in cerebral perfusion after revascularization of symptomatic carotid artery stenosis: CT measurement. Radiology 245:541–548

    PubMed  Google Scholar 

  • Walker LJ, Ismail A, McMeekin W et al (2002) Computed tomography angiography for the evaluation of carotid atherosclerotic plaque: correlation with histopathology of endarterectomy specimens. Stroke 33:977–981

    PubMed  Google Scholar 

  • Wardlaw JM, Mielke O (2005) Early signs of brain infarction at CT: observer reliability and outcome after thrombolytic treatment—systematic review. Radiology 235:444–453

    PubMed  Google Scholar 

  • Weisberg L, Greenberg J, Stazio A (1990) Computed tomographic findings in brain swelling. Comput Med Imaging Graph 14:263–268

    CAS  PubMed  Google Scholar 

  • Winter TC, Kennedy AM, Byrne J et al (2010) The cavum septi pellucidi: why is it important? J Ultrasound Med 29:427–444

    PubMed  Google Scholar 

  • Wintermark M, Albers GW, Alexandrov AV et al (2008) Acute stroke imaging research roadmap: special report. Stroke 39:1621–1628

    PubMed  Google Scholar 

  • Witwer BP, Moftakhar R, Hasan KM et al (2002) Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm. J Neurosurg 97:568–575

    PubMed  Google Scholar 

  • Wu HM, Yousem DM, Chung HW et al (2002) Influence of imaging parameters on high-intensity cerebrospinal fluid artifacts in fast-FLAIR MR imaging. AJNR Am J Neuroradiol 23:393–399

    PubMed  Google Scholar 

  • Xu M, See SJ, Ng WH et al (2005) Comparison of magnetic resonance spectroscopy and perfusion weighted imaging in pre-surgical grading of oligodendroglial tumors. Neurosurgery 56:919–926

    PubMed  Google Scholar 

  • Yamaguchi S, Eguchi K, Kiura Y et al (2007) Multi-detector-row CT angiography as a preoperative evaluation for spinal arteriovenous fistulae. Neurosurg Rev 30:321–327

    PubMed  Google Scholar 

  • Yamaguchi S, Nagayama T, Eguchi K et al (2010) Accuracy and pitfalls of multidetector-row computed tomography in detecting spinal dural arteriovenous fistulas. J Neurosurg Spine 12:243–248

    PubMed  Google Scholar 

  • Yoon HK, Shin HJ, Chang YW (2002) “Ivy sign” in childhood Moyamoya disease: depiction on FLAIR and contrast-enhanced T1-weighted MR images. Radiology 223:384–389

    PubMed  Google Scholar 

  • Yousem DM, Janick PA, Atlas SW et al (1990) Pseudoatrophy of the cervical portion of the spinal cord on MR images: a manifestation of the truncation artifact? AJR Am J Roentgenol 154:1069–1073

    CAS  PubMed  Google Scholar 

  • Zampakis P, Santosh C, Taylor W et al (2006) The role of non-invasive computed tomography in patients with suspected dural fistulas with spinal drainage. Neurosurgery 58:686–694

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. C. Tchoyoson Lim MBBS, MMed, FRCR .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lim, C.C.T., Nadarajah, M. (2015). Brain. In: Peh, W. (eds) Pitfalls in Diagnostic Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44169-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44169-5_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44168-8

  • Online ISBN: 978-3-662-44169-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics