Fault Diagnosis and Fault Tolerant Control in Critical Infrastructure Systems

  • Vicenç Puig
  • Teresa Escobet
  • Ramon Sarrate
  • Joseba Quevedo
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 565)

Abstract

Critical Infrastructure Systems (CIS) are complex large-scale systems which in turn require highly sophisticated supervisory-control systems to ensure that high performance can be achieved and maintained under adverse conditions. The global CIS Real-Time Control (RTC) need of operating in adverse conditions involves, with a high probability, sensor and actuator malfunctions (faults). This problem calls for the use of an on-line Fault Detection and Isolation (FDI) system able to detect such faults and correct them (if possible) by activating Fault Tolerant Control (FTC) mechanisms, as the use of soft sensors or using the embedded tolerance of the controller, that prevent the global RTC system from stopping every time a fault appears. To exemplify the FDI and FTC methodologies in CIS, the Barcelona drinking water network is used as the case study.

Keywords

Assure Prefix SCADA 

Notes

Acknowledgments

This work has supported by CICYT SHERECS DPI- 2011-26243 and CICYT WATMAN DPI- 2009-13744 of the Spanish Ministry of Education, by iSense grant FP7-ICT-2009-6-270428 and by EFFINET grant FP7- ICT-2012-318556 of the European Commission. The authors acknowledge the help of CETAQUA and AGBAR (Barcelona Water Company).

References

  1. 1.
    Anderson, L.B., Atwell, R.J., Barnett, D.S., Bovey, R.L.: Application of the maximum flow problem sensor placement on urban road networks for homeland security. Homel. Secur. Aff. 3(3), 1–15 (2007)Google Scholar
  2. 2.
    Bagajewicz, M., Fuxman, A., Uribe, A.: Instrumentation network design and upgrade for process monitoring and fault detection. AIChE J. 50(8), 1870–1880 (2004)CrossRefGoogle Scholar
  3. 3.
    Baseville, M., Nikiforov. I.: Detection of abrupt changes–Theory and Applications. Prentice Hall Information and Systems.Sciences Series (1993)Google Scholar
  4. 4.
    Bayoudh, M., Travé-Massuyès L., Olive, X.: On-line analytic redundancy relations instantiation guided by component discrete-dynamics for a class of non-linear hybrid systems. In: Proceedings of CDC, pp. 6970–6975. Shanghai, PR China (2009)Google Scholar
  5. 5.
    Bemporad, A., Morari, M.: Control of systems integrating logic, dynamics, and constraints. Automatica 35(3), 407–427 (1999)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Berry, J.W., Fleischer, L., Hart, W.E., Phillips, C.A., Watson, J.P.: Sensor placement in municipal water networks. J. Water Res. Plann. Manag. 131(3), 237–243 (2005)Google Scholar
  7. 7.
    Bianco, L., Confessore, G., Reververi, P.: A network based model for traffic sensor location with implications on O/D matrix estimates. Trans. Sci. 35(1), 52–60 (2001)CrossRefGoogle Scholar
  8. 8.
    Biswas, G., Simon, G., Mahadevan, N., Narasimhan, S., Ramirez, J., Karsai, G.: A robust method for hybrid diagnosis of complex systems. In: Proceedings of 5th Symposium on Fault Detection, Supervision and Safety for Technical Processes, pp 1125–1131. Washington, DC (2003)Google Scholar
  9. 9.
    Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M.: Diagnosis and Fault-Tolerant Control, 2nd edn. Springer, Heidelberg (2006)Google Scholar
  10. 10.
    Calafiore, G., Campi, M. C., El Ghaoui, L.: Identification of reliable predictor models for unknown systems: A data-consistency approach based on learning theory. In: Proceedings of the 15th IFAC World Congress (2002)Google Scholar
  11. 11.
    Camacho, E.F., Bordons, C.: Model Predictive Control, Second Edition. Springer-Verlag (2004)Google Scholar
  12. 12.
    Carrozza, G., Cotroneo, D., Russo, S.: Software faults diagnosis in complex OTS based safety critical systems. In: Proceedings of Seventh European Dependable Computing Conference, pp. 25–34 (2008)Google Scholar
  13. 13.
    Casau, P., Rosa, P., Tabatabaeipour, S.M., Silvestre, C., Stoustrup, J.: A Set-Valued Approach to FDI and FTC of Wind Turbines, Control Systems Technology, IEEE Transactions on , (in press) doi: 10.1109/TCST.2014.2322777 Google Scholar
  14. 14.
    Cembrano, G., Quevedo, J., Salamero, M., Puig, V., Figueras, J., Mart´ı, J.: Optimal control of urban drainage systems: a case study. Control Eng. Pract. 12(1), 1–9 (2004)Google Scholar
  15. 15.
    Combastel, C., Gentil, S., Rognon, J.P.: Toward a better integration of residual generation and diagnostic decision. In: Proceedings of IFAC Safeprocess’03, Washington, USA (2003)Google Scholar
  16. 16.
    Cordier, M.-O., Dague, P., Levy, F., Montmain, J., Staroswiecki, M., Trave-Massuyes, L.: Conflicts versus analytical redundancy relations: a comparative analysis of the model based diagnosis approach from the artificial intelligence and automatic control perspectives. IEEE Trans. Syst. Man Cybern B Cybern 34(5), 2163–2177 (2004)CrossRefGoogle Scholar
  17. 17.
    Ding, S.X.: Model-Based Fault Diagnosis Techniques. Springer, Berlin (2008)Google Scholar
  18. 18.
    Dulmage, A.L., Mendelsohn, N.S.: Coverings of bipartite graphs. Can. J. Math 10(4), 517–534 (1958)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    El Ghaoui, L., Calafiore, G.: Robust filtering for discrete-time systems with bounded noise and parametric uncertainty. IEEE Trans. Autom. Control 46(7), 1084–1089 (2001)CrossRefMATHGoogle Scholar
  20. 20.
    Gelormino, M., Ricker, N.: Model-predictive control of a combined sewer system. Int. J. Control 59, 793–816 (1994)CrossRefMATHGoogle Scholar
  21. 21.
    Gertler, J.: Fault Detection and Diagnosis in Engineering Systems. Marcel Dekker, New York (1998)Google Scholar
  22. 22.
    Ingimundarson, A., Sanchez, R.: Using the unfalsified control concept to achieve fault tolerance. In: A: 17th World Congress of the International Federation of Automatic Control (IFAC). 17th IFAC World Congress, pp. 1236–1242. IFAC (2008)Google Scholar
  23. 23.
    Isermann, R.: Fault Diagnosis Systems: An Introduction from Fault Detection to Fault Tolerance. Springer, New York (2006) Google Scholar
  24. 24.
    Jiang, J.: Fault-tolerant control systems —an introductory overview. Automatica SINCA. Vol. 13(1), pp. 161-174, (2005)Google Scholar
  25. 25.
    Krysander, M., Åslund, J., Nyberg, M.: An efficient algorithm for finding minimal over-constrained sub-systems for model-based diagnosis. IEEE Trans. Syst. Man Cybern. A 38(1), 197–206 (2008)Google Scholar
  26. 26.
    Krysander, M., Frisk, E.: Sensor placement for fault diagnosis. IEEE Trans. Syst. Man Cybern. A 38(6), 1398–1410 (2008)Google Scholar
  27. 27.
    Marinaki, M., Papageorgiou, M.: Optimal Real-time Control of Sewer Networks. Springer London (2005)Google Scholar
  28. 28.
    Maciejowski, J.M.: Predictive Control with Constraints. Prentice Hall, Essex (2002)Google Scholar
  29. 29.
    Meseguer, J., Puig, V., Escobet, T.: Fault isolation module implementation using a timed discrete-event approach based on interval observers. In: 7th IFAC Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 1563–1568 (2009)Google Scholar
  30. 30.
    Nejjari, F., Perez, R., Escobet, T., Travé-Massuyès, L.: Fault diagnosability utilizing quasi-static and structural modelling. Math. Comput. Model. 45(5–6), 606–616 (2006)Google Scholar
  31. 31.
    Ocampo-Martínez, C., Ingimundarson, A., Puig, V., Quevedo, J.: Objective prioritization using lexicographic minimizers for MPC of sewer networks. IEEE Trans. Control Syst. Technol. 16(1), 113–121 (2008)CrossRefGoogle Scholar
  32. 32.
    Ocampo-Martinez, C., Puig, V., Cembrano, G., Quevedo, J.: Application of predictive control strategies to the management of complex networks in the urban water cycle. IEEE Control Syst. Mag. 33(1), 15–41 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Petti, T.F., Klein, J., Dhurjati, P.S.: Diagnostic model processor: using deep knowledge for process fault diagnosis. AIChE J. 36, 565 (1990)CrossRefGoogle Scholar
  34. 34.
    Pleau, M., Colas, H., Lavalle´e, P., Pelletier, G., Bonin, R.: Global optimal real-time control of the Quebec urban drainage system. Environ. Model. Softw. 20, 401–413 (2005)Google Scholar
  35. 35.
    Ploix, S., Adrot, O., Ragot, J.: Bounding apprcomplex networks in the urbanoach to the diagnosis of a class of uncertain static systems. In: SAFEPROCESS2000. Budapest, Hungary (2000)Google Scholar
  36. 36.
    Puig, V., Quevedo, J., Escobet, T., Pulido, B.: A new fault diagnosis algorithm that improves the integration of fault detection and isolation. In: ECC-CDC’05, Sevilla, Spain (2005)Google Scholar
  37. 37.
    Puig, V., Quevedo, J., Escobet, T. Nejjari, F., de las Heras, S.: Passive Robust Fault Detection of Dynamic Processes Using Interval Models, IEEE Transactions on Control Systems Technology, Vol. 16(5), pp. 1083–1089, Sept. (2008) Google Scholar
  38. 38.
    Qin, S.J., Badgwell, T.A.: A survey of industrial model predictive control technology. Control Engineering Practice, vol. 11(7), pp. 733 –764 (2003) Google Scholar
  39. 39.
    Quevedo, J.: Polynomial approach to design a virtual actuator for a fault tolerant control: application to a Pem fuel cell. In: 5th Workshop on Advanced Control and Diagnosis, Grenoble France (2007)Google Scholar
  40. 40.
    Ragot, J., Maquin, D.: Fault measurement detection in an urban water supply network. J. Process Control 16(9), 887–902 (2006)CrossRefGoogle Scholar
  41. 41.
    Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design, Nob Hill Publishing, (2009) Google Scholar
  42. 42.
    Robles, D., Puig, V., Ocampo Martínez, C., Garza, L.E.: Methodology for actuator fault tolerance evaluation of linear constrained MPC: application to the Barcelona water network. In: Proceedings of the 20th Mediterranean Conference on Control and Automation, pp 518–523 (2012)Google Scholar
  43. 43.
    Rosich, A., Frisk, E., Åslund, J., Sarrate, R., Nejjari, F.: Fault diagnosis based on causal computations. IEEE Trans. Syst. Man Cybern A 42(2), 371–381 (2012)CrossRefGoogle Scholar
  44. 44.
    Rosich, A., Sarrate, R., Nejjari, F.: Optimal sensor placement for leakage detection and isolation in water distribution networks. In: Proceedings of the 8th IFAC International Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 776–781. México city, México (2012)Google Scholar
  45. 45.
    Sarrate, R., Nejjari, F., Rosich, A.: Sensor placement for fault diagnosis performance maximization under budgetary constraints. in Proceedings of the 2nd International Conference on Systems and Control, pp. 178–183. Marrakech, Morocco (2012a)Google Scholar
  46. 46.
    Sarrate, R., Nejjari, F., Rosich, A.: Model-based optimal sensor placement approaches to fuel cell stack system fault diagnosis. In: Proceedings of the 8th IFAC International Symposium on Fault Detection, Supervision and Safety of Technical Processes, pp. 96–101. México city, México (2012b)Google Scholar
  47. 47.
    Schilling, W., Anderson, B., Nyberg, U., Aspegren, H., Rauch, W., Harremoës, P.: Real-time control of wastewater systems. J. Hydraul. Res. 34(6), 785–797 (1996)CrossRefGoogle Scholar
  48. 48.
    Schütze, M., Butler, D., Beck, B.: Modelling, Simulation and Control of Urban Wastewater Systems. Springer, London (2002)Google Scholar
  49. 49.
    Schütze, M., Campisanob, A., Colas, H., Schilling, W., Vanrolleghem, P.: Real time control of urban wastewater systems: where do we stand today? J. Hydrol. 299, 335–348 (2004)CrossRefGoogle Scholar
  50. 50.
    Šiljak, D.D.: Decentralized control of complex systems. Academic Press, New York (1991)Google Scholar
  51. 51.
    Staroswiecki, M., Cassar, J. P., Declerk , P.: A structural framework for the design of FDI system in large scale industrial plants. In Issues of Fault Diagnosis for Dynamic Systems. Patton, R.J., Frank, P.M., Clark, R.N. (eds). Springer-Verlag. (2000)Google Scholar
  52. 52.
    Staroswiecki, M., Hoblos, G., Aitouche, A.: Sensor network design for fault tolerant estimation. Int. J. Adapt. Control Signal Process. 18, 55–72 (2004)CrossRefMATHGoogle Scholar
  53. 53.
    Tornil-Sin, S., Ocampo-Martinez, C., Puig, V., Escobet,T.: Robust fault detection of non-linear systems using set-membership state estimation based on constraint satisfaction. Eng. Appl. Artif. Intell. 25 (1), pp. 1–10, (2012)Google Scholar
  54. 54.
    Travé-Massuyès, L., Escobet, T., Olive, X.: Diagnosability analysis based on component supported analytical redundancy relations. IEE Trans. Syst. Man Cybern. A 36(6), 1146–1160 (2006)CrossRefGoogle Scholar
  55. 55.
    Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.: A review of process fault detection and diagnosis—part i: Quantitative model-based methods. Comput. Chem. Eng. 27, 293–311 (2003)CrossRefGoogle Scholar
  56. 56.
    Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.: A review of process fault detection and diagnosis—part ii: qualitative models and search strategies. Comput. Chem. Eng. 27, 313–326 (2003)CrossRefGoogle Scholar
  57. 57.
    Venkatasubramanian, V., Rengaswamy, R., Kavuri, S.: A review of process fault detection and diagnosis—part iii: process history based methods Comput. Chem. Eng. 27, 327–346 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Vicenç Puig
    • 1
  • Teresa Escobet
    • 1
  • Ramon Sarrate
    • 1
  • Joseba Quevedo
    • 1
  1. 1.Automatic Control DepartmentTechnical University of Catalonia (UPC)TerrassaSpain

Personalised recommendations