On the Broader Epistemological Significance of Self-Justifying Axiom Systems

  • Dan E. Willard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8652)


This article will be a continuation of our research into self-justifying systems. It will introduce several new theorems (one of which will transform our previous infinite-sized self-verifying logics into formalisms or purely finite size). It will explain how self-justification is useful, even when the Incompleteness Theorem clearly limits its scope.




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamowicz, Z.: Herbrand consistency and bounded arithmetic. Fundamenta Mathematicae 171(3), 279–292 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Adamowicz, Z., Zbierski, P.: On Herbrand consistency in weak theories. Archive for Mathematical Logic 40(6), 399–413 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bezboruah, A., Shepherdson, J.C.: Gödel’s second incompleteness theorem for Q. Jour. Symb. Logic 41(2), 503–512 (1976)MATHMathSciNetGoogle Scholar
  4. 4.
    Buss, S.R.: Bounded Arithmetic. Studies in Proof Theory, Lecture Notes 3. Published by Bibliopolis (1986) (Revised version of Ph. D. Thesis)Google Scholar
  5. 5.
    Buss, S.R., Ignjatovic, A.: Unprovability of consistency statements in fragments of bounded arithmetic. Annals Pure and Applied Logic 74(3), 221–244 (1995)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dawson, J.W.: Logical Dilemmas the life and work of Kurt Gödel. AKPeters (1997)Google Scholar
  7. 7.
    Feferman, S.: Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae 49, 35–92 (1960)MATHMathSciNetGoogle Scholar
  8. 8.
    Fitting, M.: First Order Logic and Automated Theorem Proving. Springer (1996)Google Scholar
  9. 9.
    Friedman, H.M.: On the consistency, completeness and correctness problems. Technical report, Ohio State Univ. (1979), See Pudlák [28]’s summary of this resultGoogle Scholar
  10. 10.
    Friedman, H.M.: Translatability and relative consistency. Technical report, Ohio State Univ. (1979), See Pudlák [28]’s summary of this resultGoogle Scholar
  11. 11.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Math. Phys. 38, 173–198 (1931)CrossRefGoogle Scholar
  12. 12.
    Gödel, K.: The present situation in the foundations of mathematics. In: Feferman, S., Dawson, J.W., Goldfarb, W., Parson, C., Solovay, R. (eds.) Collected Works Volume III: Unpublished Essays and Lectures, pp. 45–53. Oxford University Press (2004), Our quotes from this 1933 lecture come from its page 52Google Scholar
  13. 13.
    Goldstein, R.: Incompleteness The Proof and Paradox of Kurt Gödel. Norton (2005)Google Scholar
  14. 14.
    Hájek, P.: Mathematical fuzzy logic and natural numbers. Fundamenta Mathematicae 81, 155–163 (2007)MATHGoogle Scholar
  15. 15.
    Hájek, P.: Towards metamathematics of weak arithmetics over fuzzy. Logic Journal of the IPL 19(3), 467–475 (2011)CrossRefMATHGoogle Scholar
  16. 16.
    Hájek, P., Pudlák, P.: Metamathematics of First Order Arithmetic. Springer (1991)Google Scholar
  17. 17.
    Hilbert, D.: Über das Unendliche. Mathematische Annalen 95, 161–191 (1926)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. II. Springer (1939)Google Scholar
  19. 19.
    Jeroslow, R.G.: Consistency statements in formal theories. Fundamenta Mathematicae 72, 17–40 (1971)MATHMathSciNetGoogle Scholar
  20. 20.
    Kleene, S.C.: On notation for ordinal numbers. Jour. Symb. Logic 3(1), 150–156 (1938)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kołodziejczyk, L.A.: On the Herbrand notion of consistency for finitely axiomatizable fragments of bounded arithmetic theories. Jour. Symb. Logic 71(2), 624–638 (2006)CrossRefMATHGoogle Scholar
  22. 22.
    Kreisel, G., Takeuti, G.: Formally self-referential propositions in cut-free classical analysis and related systems. Dissertationes Mathematicae 118, 1–50 (1974)MathSciNetGoogle Scholar
  23. 23.
    Löb, M.H.: A solution of a problem of Leon Henkin. Jour. Symb. Logic 20(2), 115–118 (1955)CrossRefMATHGoogle Scholar
  24. 24.
    Nelson, E.: Predicative Arithmetic. Math. Notes. Princeton Univ. Press (1986)Google Scholar
  25. 25.
    Parikh, R.: Existence and feasibility in arithmetic. Jour. Symb. Logic 36(3), 494–508 (1971)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Parsons, C.H.: On n −quantifier induction. Jour. Symb. Logic 37(3), 466–482 (1972)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Pudlák, P.: Cuts, consistency statements and interpretations. Jour. Symb. Logic 50(2), 423–442 (1985)CrossRefMATHGoogle Scholar
  28. 28.
    Pudlák, P.: On the lengths of proofs of consistency. In: Collegium Logicum: Annals of the Kurt Gödel, vol. 2, pp. 65–86. Springer-Wien (1996)Google Scholar
  29. 29.
    Rogers, H.A.: Theory of Recursive Functions and Effective Compatibility. McGraw Hill (1967)Google Scholar
  30. 30.
    Salehi, S.: Herbrand consistency of some arithmetical theories. Jour. Symb. Logic 77(3), 807–827 (2012)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Solovay, R.M.: Telephone conversation in 1994 describing Solovay’s generalization of one of Pudlák’s theorems [27], using some methods of Nelson and Wilkie-Paris [24, 34] (The Appendix A of [37] offers a 4-page summary of this conversation) (1994)Google Scholar
  32. 32.
    Svejdar, V.: An interpretation of Robinson arithmetic in its Grzegorczjk’s weaker variant. Fundamenta Mathematicae 81, 347–354 (2007)MATHMathSciNetGoogle Scholar
  33. 33.
    Visser, A.: Faith and falsity. Annals Pure and Applied Logic 131(1), 103–131 (2005)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Wilkie, A.J., Paris, J.B.: On the scheme of induction for bounded arithmetic. Annals Pure and Applied Logic 35, 261–302 (1987)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Willard, D.E.: Self-verifying axiom systems. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 325–336. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  36. 36.
    Willard, D.E.: The semantic tableaux version of the second incompleteness theorem extends almost to Robinson’s arithmetic Q. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 415–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Willard, D.E.: Self-verifying systems, the incompleteness theorem and the tangibility reflection principle. Jour. Symb. Logic 66(2), 536–596 (2001)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Willard, D.E.: How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson’s arithmetic Q. Jour. Symb. Logic 67(1), 465–496 (2002)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Willard, D.E.: A version of the second incompleteness theorem for axiom systems that recognize addition but not multiplication as a total function. In: Hendricks, V., Neuhaus, F., Pederson, S.A., Scheffler, U., Wansing, H. (eds.) First Order Logic Revisited, pp. 337–368. Logos Verlag, Berlin (2004)Google Scholar
  40. 40.
    Willard, D.E.: An exploration of the partial respects in which an axiom system recognizing solely addition as a total function can verify its own consistency. Jour. Symb. Logic 70(4), 1171–1209 (2005)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Willard, D.E.: A generalization of the second incompleteness theorem and some exceptions to it. Annals Pure and Applied Logic 141(3), 472–496 (2006)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Willard, D.E.: On the available partial respects in which an axiomatization for real valued arithmetic can recognize its consistency. Jour. Symb. Logic 71(4), 1189–1199 (2006)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Willard, D.E.: Passive induction and a solution to a Paris-Wilkie open question. Annals Pure and Applied Logic 146(2), 124–149 (2007)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Willard, D.E.: Some specially formulated axiomizations for IΣ0 manage to evade the Herbrandized version of the second incompleteness theorem. Information and Computation 207(10), 1078–1093 (2009)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Yourgrau, P.: A World Without Time: The Forgotten Legacy of Gödel and Einstein. Basic Books (2005), See page 58 for the passages we have quotedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dan E. Willard
    • 1
  1. 1.University at Albany Computer Science and Mathematics DepartmentsUSA

Personalised recommendations