On the Broader Epistemological Significance of Self-Justifying Axiom Systems

  • Dan E. Willard
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8652)


This article will be a continuation of our research into self-justifying systems. It will introduce several new theorems (one of which will transform our previous infinite-sized self-verifying logics into formalisms or purely finite size). It will explain how self-justification is useful, even when the Incompleteness Theorem clearly limits its scope.


Axiom System Apply Logic Total Function Peano Arithmetic Incompleteness Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adamowicz, Z.: Herbrand consistency and bounded arithmetic. Fundamenta Mathematicae 171(3), 279–292 (2002)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Adamowicz, Z., Zbierski, P.: On Herbrand consistency in weak theories. Archive for Mathematical Logic 40(6), 399–413 (2001)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Bezboruah, A., Shepherdson, J.C.: Gödel’s second incompleteness theorem for Q. Jour. Symb. Logic 41(2), 503–512 (1976)MATHMathSciNetGoogle Scholar
  4. 4.
    Buss, S.R.: Bounded Arithmetic. Studies in Proof Theory, Lecture Notes 3. Published by Bibliopolis (1986) (Revised version of Ph. D. Thesis)Google Scholar
  5. 5.
    Buss, S.R., Ignjatovic, A.: Unprovability of consistency statements in fragments of bounded arithmetic. Annals Pure and Applied Logic 74(3), 221–244 (1995)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Dawson, J.W.: Logical Dilemmas the life and work of Kurt Gödel. AKPeters (1997)Google Scholar
  7. 7.
    Feferman, S.: Arithmetization of metamathematics in a general setting. Fundamenta Mathematicae 49, 35–92 (1960)MATHMathSciNetGoogle Scholar
  8. 8.
    Fitting, M.: First Order Logic and Automated Theorem Proving. Springer (1996)Google Scholar
  9. 9.
    Friedman, H.M.: On the consistency, completeness and correctness problems. Technical report, Ohio State Univ. (1979), See Pudlák [28]’s summary of this resultGoogle Scholar
  10. 10.
    Friedman, H.M.: Translatability and relative consistency. Technical report, Ohio State Univ. (1979), See Pudlák [28]’s summary of this resultGoogle Scholar
  11. 11.
    Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I. Monatshefte für Math. Phys. 38, 173–198 (1931)CrossRefGoogle Scholar
  12. 12.
    Gödel, K.: The present situation in the foundations of mathematics. In: Feferman, S., Dawson, J.W., Goldfarb, W., Parson, C., Solovay, R. (eds.) Collected Works Volume III: Unpublished Essays and Lectures, pp. 45–53. Oxford University Press (2004), Our quotes from this 1933 lecture come from its page 52Google Scholar
  13. 13.
    Goldstein, R.: Incompleteness The Proof and Paradox of Kurt Gödel. Norton (2005)Google Scholar
  14. 14.
    Hájek, P.: Mathematical fuzzy logic and natural numbers. Fundamenta Mathematicae 81, 155–163 (2007)MATHGoogle Scholar
  15. 15.
    Hájek, P.: Towards metamathematics of weak arithmetics over fuzzy. Logic Journal of the IPL 19(3), 467–475 (2011)CrossRefMATHGoogle Scholar
  16. 16.
    Hájek, P., Pudlák, P.: Metamathematics of First Order Arithmetic. Springer (1991)Google Scholar
  17. 17.
    Hilbert, D.: Über das Unendliche. Mathematische Annalen 95, 161–191 (1926)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. II. Springer (1939)Google Scholar
  19. 19.
    Jeroslow, R.G.: Consistency statements in formal theories. Fundamenta Mathematicae 72, 17–40 (1971)MATHMathSciNetGoogle Scholar
  20. 20.
    Kleene, S.C.: On notation for ordinal numbers. Jour. Symb. Logic 3(1), 150–156 (1938)CrossRefMathSciNetGoogle Scholar
  21. 21.
    Kołodziejczyk, L.A.: On the Herbrand notion of consistency for finitely axiomatizable fragments of bounded arithmetic theories. Jour. Symb. Logic 71(2), 624–638 (2006)CrossRefMATHGoogle Scholar
  22. 22.
    Kreisel, G., Takeuti, G.: Formally self-referential propositions in cut-free classical analysis and related systems. Dissertationes Mathematicae 118, 1–50 (1974)MathSciNetGoogle Scholar
  23. 23.
    Löb, M.H.: A solution of a problem of Leon Henkin. Jour. Symb. Logic 20(2), 115–118 (1955)CrossRefMATHGoogle Scholar
  24. 24.
    Nelson, E.: Predicative Arithmetic. Math. Notes. Princeton Univ. Press (1986)Google Scholar
  25. 25.
    Parikh, R.: Existence and feasibility in arithmetic. Jour. Symb. Logic 36(3), 494–508 (1971)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Parsons, C.H.: On n −quantifier induction. Jour. Symb. Logic 37(3), 466–482 (1972)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Pudlák, P.: Cuts, consistency statements and interpretations. Jour. Symb. Logic 50(2), 423–442 (1985)CrossRefMATHGoogle Scholar
  28. 28.
    Pudlák, P.: On the lengths of proofs of consistency. In: Collegium Logicum: Annals of the Kurt Gödel, vol. 2, pp. 65–86. Springer-Wien (1996)Google Scholar
  29. 29.
    Rogers, H.A.: Theory of Recursive Functions and Effective Compatibility. McGraw Hill (1967)Google Scholar
  30. 30.
    Salehi, S.: Herbrand consistency of some arithmetical theories. Jour. Symb. Logic 77(3), 807–827 (2012)CrossRefMATHMathSciNetGoogle Scholar
  31. 31.
    Solovay, R.M.: Telephone conversation in 1994 describing Solovay’s generalization of one of Pudlák’s theorems [27], using some methods of Nelson and Wilkie-Paris [24, 34] (The Appendix A of [37] offers a 4-page summary of this conversation) (1994)Google Scholar
  32. 32.
    Svejdar, V.: An interpretation of Robinson arithmetic in its Grzegorczjk’s weaker variant. Fundamenta Mathematicae 81, 347–354 (2007)MATHMathSciNetGoogle Scholar
  33. 33.
    Visser, A.: Faith and falsity. Annals Pure and Applied Logic 131(1), 103–131 (2005)CrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Wilkie, A.J., Paris, J.B.: On the scheme of induction for bounded arithmetic. Annals Pure and Applied Logic 35, 261–302 (1987)CrossRefMATHMathSciNetGoogle Scholar
  35. 35.
    Willard, D.E.: Self-verifying axiom systems. In: Mundici, D., Gottlob, G., Leitsch, A. (eds.) KGC 1993. LNCS, vol. 713, pp. 325–336. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  36. 36.
    Willard, D.E.: The semantic tableaux version of the second incompleteness theorem extends almost to Robinson’s arithmetic Q. In: Dyckhoff, R. (ed.) TABLEAUX 2000. LNCS, vol. 1847, pp. 415–430. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  37. 37.
    Willard, D.E.: Self-verifying systems, the incompleteness theorem and the tangibility reflection principle. Jour. Symb. Logic 66(2), 536–596 (2001)CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Willard, D.E.: How to extend the semantic tableaux and cut-free versions of the second incompleteness theorem almost to Robinson’s arithmetic Q. Jour. Symb. Logic 67(1), 465–496 (2002)CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Willard, D.E.: A version of the second incompleteness theorem for axiom systems that recognize addition but not multiplication as a total function. In: Hendricks, V., Neuhaus, F., Pederson, S.A., Scheffler, U., Wansing, H. (eds.) First Order Logic Revisited, pp. 337–368. Logos Verlag, Berlin (2004)Google Scholar
  40. 40.
    Willard, D.E.: An exploration of the partial respects in which an axiom system recognizing solely addition as a total function can verify its own consistency. Jour. Symb. Logic 70(4), 1171–1209 (2005)CrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    Willard, D.E.: A generalization of the second incompleteness theorem and some exceptions to it. Annals Pure and Applied Logic 141(3), 472–496 (2006)CrossRefMATHMathSciNetGoogle Scholar
  42. 42.
    Willard, D.E.: On the available partial respects in which an axiomatization for real valued arithmetic can recognize its consistency. Jour. Symb. Logic 71(4), 1189–1199 (2006)CrossRefMATHMathSciNetGoogle Scholar
  43. 43.
    Willard, D.E.: Passive induction and a solution to a Paris-Wilkie open question. Annals Pure and Applied Logic 146(2), 124–149 (2007)CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Willard, D.E.: Some specially formulated axiomizations for IΣ0 manage to evade the Herbrandized version of the second incompleteness theorem. Information and Computation 207(10), 1078–1093 (2009)CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Yourgrau, P.: A World Without Time: The Forgotten Legacy of Gödel and Einstein. Basic Books (2005), See page 58 for the passages we have quotedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Dan E. Willard
    • 1
  1. 1.University at Albany Computer Science and Mathematics DepartmentsUSA

Personalised recommendations