Skip to main content

A Calculus of Anyons

  • Conference paper
Logic, Language, Information, and Computation (WoLLIC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8652))

Abstract

Recent developments in theoretical physics have highlighted interesting topological features of some two-dimensional particles, so-called anyons, that can be used to realise robust quantum computation. In this paper we show how an anyon system can be defined as a calculus of quantum functions, i.e. linear transformations on the space of all possible physical configurations of a set of anyons. A computation in this calculus represents the braiding of anyons and the final term of a computation corresponds to the outcome of a measurement of the anyons final fusion state, i.e. in general a probability distribution on the set of all possible outcomes. We show that this calculus describes a universal anyonic quantum computer provided that the space of terms satisfies some topological properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barendregt, H.P.: The Lambda Calculus, revised edn. Studies in Logic and the Foundations of Mathematics, vol. 103. North-Holland, Amsterdam (1991)

    Google Scholar 

  2. Bernstein, E., Vazirani, U.V.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. dal Lago, U., Masini, A., Zorzi, M.: On a measurement-free quantum lambda calculus with classical control. Mathematical. Structures in Comp. Sci. 19, 297–335 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Deutsch, D.: Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 400(1818), 97–117 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Deutsch, D.: Quantum Computational Networks. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 425, 73–90 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Feynman, R.P.: Simulating physics with computers. International Journal of Theoretical Physics 21(6-7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  7. Freedman, M.H., Kitaev, A., Larsen, M.J., Wang, Z.: Topological Quantum Computation. Physical Review Letters 40(12), 120402 (2001), http://arxiv.org/abs/quant-ph/0101025

    Google Scholar 

  8. Freedman, M.H., Kitaev, A., Larsen, M.J., Wang, Z.: Topological Quantum Computation. Bull. Amer. Math. Soc. 40, 31–38 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Freedman, M.H., Kitaev, A., Wang, Z.: Simulation of topological filed theories by quantum computers. Commun. Math. Phys. 227(3), 587–603 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Freedman, M.H., Larsen, M., Wang, Z.: A modular functor which is universal for quantum computation. Commun. Math. Phys. 227(3), 605–622 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Freedman, M.H., Wang, Z.: The Two-Eigenvalue Pproblem and density of Jones Representation of Braid Groups. Commun. Math. Phys. 228, 177–199 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  12. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Physical Review Letters 79(2), 325 (1997)

    Article  Google Scholar 

  13. Hormozi, L., Zikos, G., Bonesteel, N.E., Simon, S.H.: Topological quantum compiling. Physical Review B 75(16), 165310 (2007), http://prb.aps.org/abstract/PRB/v75/i16/e165310

    Article  Google Scholar 

  14. Kitaev, A.: Fault-tolerant quantum computation by anyons. Annals of Physics 303(1), 27 (1997), http://arxiv.org/abs/quant-ph/9707021

    MathSciNet  Google Scholar 

  15. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Nishimura, H., Ozawa, M.: Computational complexity of uniform quantum circuit families and quantum turing machines. Theoretical Computer Science 276(1), 147–181 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  17. Pachos, J.K.: Introduction to Topological Quantum Computation. Cambridge University Press (2012)

    Google Scholar 

  18. Selinger, P., Valiron, B.: A lambda calculus for quantum computation with classical control. Mathematical Structures in Computer Science 16, 527–552 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  19. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Journal on Computing 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  20. Trebst, S., Troyer, M., Wang, Z., Ludwig, A.W.W.: A short introduction to fibonacci anyon models. Progress of Theoretical Physics 176, 384–407 (2008)

    Article  MATH  Google Scholar 

  21. Wang, Z.: Topological Quantum Computation. American Mathematical Soc. (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Di Pierro, A., Panarotto, F. (2014). A Calculus of Anyons. In: Kohlenbach, U., Barceló, P., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2014. Lecture Notes in Computer Science, vol 8652. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44145-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44145-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44144-2

  • Online ISBN: 978-3-662-44145-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics