The Periodic Decomposition Problem

  • Bálint Farkas
  • Szilárd  Gy. RévészEmail author
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 102)


If a function \(f:\mathbb {R}\rightarrow \mathbb {R}\) can be represented as the sum of \(n\) periodic functions as \(f=f_1+\cdots +f_n\) with \(f(x+\alpha _j)=f(x)\) (\(j=1,\dots ,n\)), then it also satisfies a corresponding nth order difference equation \(\Delta _{\alpha _1}\dots \Delta _{\alpha _n} f=0\). The periodic decomposition problem asks for the converse implication, which may hold or fail depending on the context (on the system of periods, on the function class in which the problem is considered, etc.). The problem has natural extensions and ramifications in various directions, and is related to several other problems in real analysis, Fourier and functional analysis. We give a survey about the available methods and results, and present a number of intriguing open problems. Most results have already appeared elsewhere, while the recent results of [7, 8] are under publication. We give only some selected proofs, including some alternative ones which have not been published, give substantial insight into the subject matter, or reveal connections to other mathematical areas. Of course this selection reflects our personal judgment. All other proofs are omitted or only sketched.


Periodic functions Periodic decomposition Difference equation Almost periodic and mean periodic functions Transformation invariant functions Functions with values in a group Operator semigroups 


  1. 1.
    Bazit, R.B.: Generalization of two theorems of M.I. Kadets concerning the indefinite integral of abstract almost periodic functions. Matematicheskie Zametki 9(3), 311–321 (1971)MathSciNetGoogle Scholar
  2. 2.
    Besicovitch, A.S.: Almost Periodic Functions. Dover Publications Inc., New York (1955)zbMATHGoogle Scholar
  3. 3.
    Day, M.M.: Fixed-point theorems for compact convex sets. Ill. J. Math. 5, 585–590 (1961)zbMATHGoogle Scholar
  4. 4.
    Edgar, G.A., Rosenblatt, J.M.: Difference equations over locally compact abelian groups. Trans. Amer. Math. Soc. 253, 273–289 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Eisner, T., Farkas, B., Haase, M., Nagel, R.: Operator Theoretic Aspects of Ergodic Theory. Graduate Text in Mathematics. Springer, Berlin (2013, In Press)Google Scholar
  6. 6.
    Engel, K.-J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations, Graduate Texts in Mathematics, vol. 194. Springer, New York (2000)Google Scholar
  7. 7.
    Farkas, B.: A Bohl-Bohr-Kadets type theorem characterizing Banach spaces not containing \(c_0\) (2013). (Submitted); arxiv:1301.6250
  8. 8.
    Farkas, B.: A note on the periodic decomposition problem for semigroups (2014). (Submitted); arxiv:1401.1226
  9. 9.
    Farkas, B., Harangi, V., Keleti, T.: Révész, Sz.: Invariant decomposition of functions with respect to commuting invertible transformations. Proc. Amer. Math. Soc. 136(4), 1325–1336 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Farkas, B.: Révész, Sz.: Decomposition as the sum of invariant functions with respect to commuting transformations. Aequationes Math. 73(3), 233–248 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Fonf, V.P., Lin, M., Wojtaszczyk, P.: Ergodic characterizations of reflexivity of banach spaces. J. Funct. Anal. 187(1), 146–162 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Fonf, V.P., Lin, M., Wojtaszczyk, P.: A non-reflexive banach space with all contractions mean ergodic. Isr. J. Math. 179, 479–491 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Gajda, Z.: Note on decomposition of bounded functions into the sum of periodic terms. Acta Math. Hungar. 59(1–2), 103–106 (1992)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Gottschalk, W.H., Hedlund, G.A.: Topological Dynamics. Amer. Math. Soc. Colloquium Publications. American Mathematical Society, Providence, R.I. (1955)Google Scholar
  15. 15.
    Harangi, V.: Periodic decompositions of functions. Real Anal. Exchange (31st Summer Symposium Conference), 185–188 (2007)Google Scholar
  16. 16.
    Harangi, V.: Sums of periodic functions. Master’s thesis, Eötvös Loránd Univeristy, Budapest (2007). (In Hungarian)Google Scholar
  17. 17.
    Harangi, V.: On the uniqueness of periodic decomposition. Fund. Math. 211(3), 225–244 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kadec, M.I.: The integration of almost periodic functions with values in a Banach space. Funkcional. Anal. i Priložen. 3(3), 71–74 (1969)MathSciNetGoogle Scholar
  19. 19.
    Kadets, V.M., Shumyatskiy, B.M.: Averaging technique in the periodic decomposition problem. Mat. Fiz. Anal. Geom. 7(2), 184–195 (2000)zbMATHMathSciNetGoogle Scholar
  20. 20.
    Kadets, V.M., Shumyatskiy, B.M.: Additions to the periodic decomposition theorem. Acta Math. Hungar. 90(4), 293–305 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Kahane, J.P.: Lectures on Mean Periodic Functions. Tata Institute, Bombay (1959)zbMATHGoogle Scholar
  22. 22.
    Károlyi, G., Keleti, T., Kós, G., Ruzsa, I.Z.: Periodic decomposition of integer valued functions. Acta Math. Hungar. 119(3), 227–242 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Keleti, T.: Difference functions of periodic measurable functions. Ph.D. thesisGoogle Scholar
  24. 24.
    Keleti, T.: On the differences and sums of periodic measurable functions. Acta Math. Hungar. 75(4), 279–286 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Keleti, T.: Periodic decomposition of measurable integer valued functions. Real Anal. Exchange (31st Summer Symposium Conference), 189–193 (2007)Google Scholar
  26. 26.
    Keleti, T.: Periodic decomposition of measurable integer valued functions. J. Math. Anal. Appl. 337(2), 1394–1403 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Keleti, T. and Kolountzakis, M.: On the determination of sets by their triple correlation in finite cyclic groups. Online J. Anal. Comb. 1, 4, 18 pp. (electronic) (2006)Google Scholar
  28. 28.
    Laczkovich, M., Révész, Sz: Periodic decompositions of functions. Real Anal. Exch. 13(1), 126–128 (1987)Google Scholar
  29. 29.
    Laczkovich, M.: Révész, Sz.: Periodic decompositions of continuous functions. Acta Math. Hungar. 54(3–4), 329–341 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Laczkovich, M.: Révész, Sz.: Decompositions into the sum of periodic functions belonging to a given Banach space. Acta Math. Hungar. 55(3–4), 353–363 (1990)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Martinez, J., Mazon, J.M.: \(C_0\)-semigroups norm continuous at infinity. Semigroup Forum 52(2), 213–224 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    Mortola, S., Peirone, R.: The sum of periodic functions. Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat. (8) 2(2), 393–396 (1999)zbMATHMathSciNetGoogle Scholar
  33. 33.
    Nagel, R.: Mittelergodische Halbgruppen linearer Operatoren. Ann. Inst. Fourier (Grenoble) 23(4), 75–87 (1973)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Natkaniec, T., Wilczyński, W.: Sums of periodic Darboux functions and measurability. Atti Sem. Mat. Fis. Univ. Modena 51, 369–376 (2003)zbMATHMathSciNetGoogle Scholar
  35. 35.
    Schwartz, L.: Théorie générale des fonctions moyenne-périodiques. Ann. Math. 2(48), 857–929 (1947)CrossRefGoogle Scholar
  36. 36.
    Segal, I.E.: Equivalences of measure spaces. Amer. J. Math. 73, 275–313 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Székelyhidi, L.: On mean periodic functions. Aequationes Math. 58(3), 203–213 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Whitney, H.: On functions with bounded \(n\)th differences. J. Math. Pures Appl. 9(36), 67–95 (1957)MathSciNetGoogle Scholar
  39. 39.
    Wierdl, M.: Continuous functions that can be represented as the sum of finitely many periodic functions. Mat. Lapok 32(1–3), 107–113 (1981/1984)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Bergische Universität WuppertalWuppertalGermany
  2. 2.Alfréd Rényi Institute of Mathematics, Hungarian Academy of SciencesKuwait UniversityKuwaitKuwait

Personalised recommendations