Skip to main content

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 102))

Abstract

The classic Beverton-Holt (discrete logistic) difference equation, which arises in population dynamics, has a globally asymptotically stable equilibrium (for positive initial conditions) if its coefficients are constants. If the coefficients change in time, then the equation becomes nonautonomous and the asymptotic dynamics might not be as simple. One reason the coefficients can change in time is their evolution by natural selection. If the model coefficients are functions of a heritable phenotypic trait subject to natural selection then, by standard methods for modeling evolution, the model becomes a planar system of coupled difference equations, consisting of a Beverton-Holt type equation for the population dynamics and a difference equation for the dynamics of the mean phenotypic trait. We consider a case when the trait equation uncouples from the population dynamic equation and obtain criteria under which the evolutionary system has globally asymptotically stable equilibria or periodic solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams, P.A.: Modelling the adaptive dynamics of traits involved in inter- and intraspecific interactions: an assessment of three methods. Ecol. Lett. 4, 166–175 (2001)

    Article  Google Scholar 

  2. Cushing, J.M.: Periodically forced nonlinear systems of difference equations. J. Differ. Equ. Appl. 3, 547–561 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cushing, J.M.: A bifurcation theorem for Darwinian matrix models. Nonlinear Stud. 17(1), 1–13 (2010)

    MATH  MathSciNet  Google Scholar 

  4. Dercole, F., Rinaldi, S.: Analysis of Evolutionary Processes: The Adaptive Dynamics Approach and Its Applications. Princeton University Press, Princeton (2008)

    Google Scholar 

  5. Lande, R.: Natural selection and random genetic drift in phenotypic evolution. Evolution 30, 314–334 (1976)

    Article  Google Scholar 

  6. Leslie, P.H.: Further notes on the use of matrices in population mathematics. Biometrika 35, 213–245 (1948)

    Article  MATH  MathSciNet  Google Scholar 

  7. Pielou, E.C.: Mathematical Ecology. Wiley Interscience, New York (1967)

    Google Scholar 

  8. Poole, R.W.: An Introduction to Quantitative Ecology. McGraw-Hill Series in Population Biology, McGraw-Hill Book Company, New York (1974)

    Google Scholar 

  9. Skellam, J.F.: Studies in statistical ecology. 1. Spatial pattern. Biometrika 39, 346–362 (1952)

    MATH  Google Scholar 

  10. Utida, S.: Damped oscillation of population density at equilibrium. Res. Popul. Ecol. 9, 1–9 (1967)

    Article  Google Scholar 

  11. Vincent, T.L., Brown, J.S.: Evolutionary Game Theory, Natural Selection, and Darwinian Dynamics. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

J.M. Cushing was supported by NSF grant DMS 0917435.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Cushing .

Editor information

Editors and Affiliations

Appendix

Appendix

Lemma 1

Consider the nonautonomous linear difference equation

$$\begin{aligned} y_{t+1}=\alpha _{t}y_{t}+\beta _{t} \end{aligned}$$
(21)

for \(t=0,1,2,\ldots .\) Assume \(\alpha _{t},\beta _{t}\ge 0\) and

$$ \lim _{t\rightarrow +\infty }\alpha _{t}=\alpha ^{e},\quad \lim _{t\rightarrow +\infty }\beta _{t}=\beta ^{e}. $$

If \(\alpha ^{e}<1\) then for all \(y_{0}>0\)

$$ \lim _{t\rightarrow +\infty }y_{t}=y^{e}:=\frac{\beta ^{e}}{1-\alpha ^{e} }. $$

Proof

If we define \(w_{t}:= y_{t}-y_{e}\), then

$$ w_{t+1}=\alpha _{t}w_{t}+q_{t} $$

where

$$ q_{t}:=\left( \alpha _{t}-\alpha ^{e}\right) y^{e}+\beta _{t}-\beta ^{e} $$

and hence

$$ \lim _{t\rightarrow +\infty }q_{t}=0. $$

By induction

$$ w_{t+1}=\left( {\displaystyle \prod \limits _{i=0}^{t}} \alpha _{i}\right) w_{0}+ {\displaystyle \sum \limits _{j=1}^{t}} \left( {\displaystyle \prod \limits _{i=j}^{t}} \alpha _{i}\right) q_{j-1}+q_{t}. $$

Let \(\bar{\alpha }\ \)and \(\bar{q}>0\) be upper bounds for the bounded sequences \(\alpha _{t}\) and \(\left| q_{t}\right| \) respectively. Choose a positive \(\rho <1\). Since \(\alpha ^{e}<1\) and \(\lim _{t\rightarrow +\infty } b_{t}=b^{e}\), for arbitrary \(\varepsilon >0\), we can find a \(T>0\) such that \(t\ge T\) implies

$$ 0\le \alpha _{t}\le \rho ,\quad \left| q_{t}\right| \le \varepsilon \left( 1-\rho \right) . $$

For \(t\ge T\) we have

$$\begin{aligned} \left| w_{t+1}\right|&\le \left( {\displaystyle \prod \limits _{i=0}^{T}} \alpha _{i}\right) \left( {\displaystyle \prod \limits _{i=T+1}^{t}} \alpha _{i}\right) \left| w_{0}\right| + {\displaystyle \sum \limits _{j=1}^{T}} \left( {\displaystyle \prod \limits _{i=j}^{t}} \alpha _{i}\right) \left| q_{j-1}\right| \\&\qquad + {\displaystyle \sum \limits _{j=T+1}^{t}}\left( {\displaystyle \prod \limits _{i=j}^{t}} \alpha _{i}\right) \left| q_{j-1}\right| +\left| q_{t}\right| \\&\le \bar{\alpha }^{T+1}\rho ^{t-T}\left| w_{0}\right| + {\displaystyle \sum \limits _{j=1}^{T}} \left( {\displaystyle \prod \limits _{i=j}^{T}} \alpha _{i}\right) \left( {\displaystyle \prod \limits _{i=T+1}^{t}} \alpha _{i}\right) \left| q_{j-1}\right| \\&\qquad + {\displaystyle \sum \limits _{j=T+1}^{t}} \rho ^{t-j+1}\varepsilon \left( 1-\rho \right) +\varepsilon \left( 1-\rho \right) \end{aligned}$$
$$\begin{aligned} \left| w_{t+1}\right|&\le \bar{\alpha }^{T+1}\rho ^{t-T}\left| w_{0}\right| +\rho ^{t-T} \bar{q} {\displaystyle \sum \limits _{j=1}^{T}} \bar{\alpha }^{T-j+a}+\frac{1}{1-\rho }\varepsilon \left( 1-\rho \right) . \end{aligned}$$

Letting \(t\rightarrow +\infty \) we obtain

$$ \lim _{t\rightarrow +\infty }\sup \left| w_{t+1}\right| \le \varepsilon . $$

Because \(\varepsilon >0\) is arbitrary, we conclude \(\lim _{t\rightarrow +\infty }\left| w_{t+1}\right| =0\).

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cushing, J.M. (2014). An Evolutionary Beverton-Holt Model. In: AlSharawi, Z., Cushing, J., Elaydi, S. (eds) Theory and Applications of Difference Equations and Discrete Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44140-4_7

Download citation

Publish with us

Policies and ethics