Skip to main content

Advances in Periodic Difference Equations with Open Problems

  • Conference paper
  • First Online:
Theory and Applications of Difference Equations and Discrete Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 102))

Abstract

In this paper, we review some recent results on the dynamics of semi-dynamical systems generated by the iteration of a periodic sequence of continuous maps. In particular, we state several open problems focused on the structure of periodic orbits, forcing between periodic orbits, sharing periodic orbits, folding and unfolding periodic systems, and on applications of periodic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abrams, P.A.: When does greater mortality increase population size? The long story and diverse mechanisms underlying the hydra effect. Ecol. Lett. 12, 462–474 (2009)

    Article  Google Scholar 

  2. Adler, R.L., Konheim, A.G., McAndrew, M.H.: Topological entropy. Trans. Amer. Math. Soc. 114, 309–319 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alikhani-Koopaei, A.: On common fixed points and periodic points of commuting functions. Int. J. Math. Math. Sci. 21, 269–276 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Almeida, J., Peralta-Salas, D., Romera, M.: Can two chaotic systems give rise to order? Phys. D 200, 124–132 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Alsedá, L., Llibre, J., Misiurewicz, M.: Combinatorial dynamics and entropy in dimension one. World Scientific, Singapore (1993)

    Book  MATH  Google Scholar 

  6. Al-Salman, A., AlSharawi, Z.: A new characterization of periodic oscillations in periodic difference equations. Chaos Solitons Fractals 44, 921–928 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. AlSharawi, Z.: Harvesting and stocking in contest competition models: open problems and conjectures, Pre-print

    Google Scholar 

  8. AlSharawi, Z.: Periodic orbits in periodic discrete dynamics. Comput. Math. Appl. 56, 1966–1974 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  9. AlSharawi, Z., Angelos, J.: On the periodic logistic equation. Appl. Math. Comput. 180, 342–352 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. AlSharawi, Z., Angelos, J., Elaydi, S.: Existence and stability of periodic orbits of periodic difference equations with delays. Int. J. Bifur. Chaos Appl. Sci. Engrg. 18, 203–217 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. AlSharawi, Z., Angelos, J., Elaydi, S., Rakesh, L.: An extension of Sharkovsky’s theorem to periodic difference equations. J. Math. Anal. Appl. 316, 128–141 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. AlSharawi, Z., Cánovas, J. S., Linero, A.: Folding and unfolding in periodic difference equations, pre-print

    Google Scholar 

  13. AlSharawi, Z., Rhouma, M.: The Beverton-Holt model with periodic and conditional harvesting. J. Biol. Dyn. 3, 463–478 (2009)

    Article  MathSciNet  Google Scholar 

  14. AlSharawi, Z., Rhouma, M.: The discrete Beverton-Holt model with periodic harvesting in a periodically fluctuating environment. Adv. Diff. Equ. (2010), Article ID 215875, doi:10.1155/2010/215875

  15. Alves, J.F.: What we need to find out the periods of a periodic difference equation. J. Diff. Equ. Appl. 15, 833–847 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Alves, J.F., Silva, L.: Periodic paths on nonautonomous graphs. Linear Algebra Appl. 437, 1003–1015 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Beverton, R.J.H., Holt, S.J.: On the Dynamics of Exploited Fish Populations. The Blackburn Press, New Jersey (2004)

    Google Scholar 

  18. Block, L., Coppel, W.A.: Dynamics in One Dimension. Lecture Notes in Mathematics. Springer, Berlin (1992)

    MATH  Google Scholar 

  19. Boyarsky, A., Gora, P., Islam, M.S.: Randomly chosen chaotic maps can give rise to nearly ordered behavior. Phys. D 210, 284–294 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Boyce, W.M.: Commuting functions with no common fixed point. Trans. Amer. Math. Soc. 137, 77–92 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cánovas, J.S.: Analyzing when the dynamic Parrondo’s paradox is not possible. Int. J. Bifur. Chaos Appl. Sci. Engrg. 20, 2975–2978 (2010)

    Article  MATH  Google Scholar 

  22. Cánovas, J.S., Linero, A.: On the dynamics of composition of commuting interval maps. J. Math. Anal. Appl. 305, 296–303 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Cánovas, J.S., Linero, A.: Periodic structure of alternating continuous interval maps. J. Difference Equ. Appl. 12, 847–858 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  24. Cánovas, J.S., Linero, A., Peralta-Salas, D.: Dynamic Parrondo’s paradox. Phys. D 218, 177–184 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Cánovas, J.S., Muñoz, M.: Computing topological entropy for periodic sequences of unimodal maps, pre-print

    Google Scholar 

  26. Cánovas, J.S., Muñoz, M.: Revisiting Parrondo’s paradox for the logistic family. Fluct. Noise Lett. (2013). doi:10.1142/S0219477513500156

    MATH  Google Scholar 

  27. Cushing, J., Henson, S.: The effect of periodic habitat fluctuations on a nonlinear insect population model. J. Math. Biol. 36, 201–226 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  28. D’Aniello, E., Oliveira, H.: Pitchfork bifurcation for non-autonomous interval maps. J. Difference Equ. Appl. 15, 291–302 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  29. D’Aniello, E., Steele, T.H.: Stability in the family of \(\omega \)-limit sets of alternating systems. J. Math. Anal. Appl. 389, 1191–1203 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. D’Aniello, E., Steele, T.H.: The \(\omega \)-limit sets of alternating systems. J. Diff. Equ. Appl. 17, 1793–1799 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. DeMarr, R.: Common fixed points for commuting contraction mappings. Pacific J. Math. 13, 1139–1141 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  32. Du, B.S.: A simple proof of Sharkovsky’s theorem. Amer. Math. Monthly 111, 595–599 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Elaydi, S., Sacker, R.: Periodic difference equations, population biology and the Cushing-Henson conjectures. Math. Biosci. 201, 195–207 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Grinč, M.: On common fixed points of commuting triangular maps. Bull. Polish Acad. Sci. Math. 47, 61–67 (1999)

    MATH  MathSciNet  Google Scholar 

  35. Harmer, G.P., Abbott, D.: Game theory: losing strategies can win by Parrondo’s paradox. Nature 402, 864 (1999)

    Article  Google Scholar 

  36. Huneke, J.P.: On common fixed points of commuting functions on an interval. Trans. Amer. Math. Soc. 139, 371–381 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  37. Isbell, J.R.: Commuting mappings of trees. Bull. Amer. Math. Soc. 63, 419 (1957)

    Article  MathSciNet  Google Scholar 

  38. Jillson, D.A.: Insect populations respond to fluctuating environments. Nature 288, 699–700 (1980)

    Article  Google Scholar 

  39. Jungck, G.: Common fixed points for commuting and compatible maps on compacta. Proc. Amer. Math. Soc. 103, 977–983 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  40. Kolyada, S., Snoha, L’.: Topological entropy of nonautononous dynamical systems. Random Comput. Dyn. 4, 205–233 (1996)

    Google Scholar 

  41. Linero, A.: Common fixed points for commuting Cournot maps. Real Anal. Exchange 28, 121–145 (2002)

    MathSciNet  Google Scholar 

  42. Liz, E.: Complex dynamics of survival and extinction in simple population models with harvesting. Theor. Ecol. 3, 209–221 (2010)

    Article  Google Scholar 

  43. Liz, E., Ruiz-Herrera, A.: The hydra effect, bubbles, and chaos in a simple discrete population model with constant effort harvesting. J. Math. Biol. 65, 997–1016 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  44. Matsumoto, A., Nonaka, Y.: Statistical dynamics in a chaotic Cournot model with complementary goods. J. Econ. Behav. Organ. 61, 769–783 (2006)

    Article  Google Scholar 

  45. May, R.M.: Simple mathematical models with very complicated dynamics. Nature 261, 459–467 (1976)

    Article  Google Scholar 

  46. Parrondo, J.M.R., Harmer, G.P., Abbott, D.: New paradoxical games based on Brownian ratchets. Phys. Rev. Lett. 85, 5226–5229 (2000)

    Article  Google Scholar 

  47. Puu, T.: Chaos in duopoly pricing. Chaos Solitons Fractals 1, 573–581 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  48. Ricker, W.E.: Stock and recruitment. J. Fish. Res. Board Canada 11, 559–623 (1954)

    Article  Google Scholar 

  49. Ritt, J.F.: Permutable rational functions. Trans. Amer. Math. Soc. 25, 399–448 (1923)

    Article  MATH  MathSciNet  Google Scholar 

  50. Schreiber, S.J.: Chaos and population disappearances in simple ecological models. J. Math. Biol. 42, 239–260 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  51. Seno, H.: A paradox in discrete single species population dynamics with harvesting/thinning. Math. Biosci. 214, 63–69 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  52. Sharkovsky, A.N.: Coexistence of cycles of a continuous transformation of a line into itself, Ukrain. Mat. Zh. 16, 61–71 (1964) (in Russian)

    Google Scholar 

  53. Shields, A.L.: On fixed points of commuting analytic functions. Proc. Amer. Math. Soc. 15, 703–706 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  54. Sinha, S., Parthasarathy, S.: Unusual dynamics of extinction in a simple ecological model. Proc. Natl. Acad. Sci. U S A 93, 1504–1508 (1996)

    Article  MATH  Google Scholar 

  55. Steele, T.H.: A note on periodic points and commuting functions, Real Anal. Exch. 24, 781–790 (1998/9)

    Google Scholar 

  56. Spurgin, R., Tamarkin, M.: Switching investments can be a bad idea when Parrondo’s paradox applies. J. Behav. Finance 6, 15–18 (2005)

    Article  Google Scholar 

  57. Wolf, D.M., Vazirani, V.V., Arkin, A.P.: Diversity in times of adversity: probabilistic strategies in microbial survival games. J. Theoret. Biol. 234, 227–253 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

J.S. Cánovas and A. Linero have been partially supported by the grants MTM2011-23221 from Ministerio de Ciencia e Innovación (Spain) and 08667/PI/08 from Programa de Generación de Conocimiento Científico de Excelencia de la Fundación Séneca, Agencia de Ciencia y Tecnología de la Comunidad Autónoma de la Región de Murcia (II PCTRM 2007–10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jose S. Cánovas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

AlSharawi, Z., Cánovas, J.S., Linero, A. (2014). Advances in Periodic Difference Equations with Open Problems. In: AlSharawi, Z., Cushing, J., Elaydi, S. (eds) Theory and Applications of Difference Equations and Discrete Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44140-4_6

Download citation

Publish with us

Policies and ethics