Skip to main content

Chaos and Wild Chaos in Lorenz-Type Systems

  • Conference paper
  • First Online:

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 102))

Abstract

This contribution provides a geometric perspective on the type of chaotic dynamics that one finds in the original Lorenz system and in a higher-dimensional Lorenz-type system. The latter provides an example of a system that features robustness of homoclinic tangencies; one also speaks of ‘wild chaos’ in contrast to the ‘classical chaos’ where homoclinic tangencies accumulate on one another, but do not occur robustly in open intervals in parameter space. Specifically, we discuss the manifestation of chaotic dynamics in the three-dimensional phase space of the Lorenz system, and illustrate the geometry behind the process that results in its description by a one-dimensional noninvertible map. For the higher-dimensional Lorenz-type system, the corresponding reduction process leads to a two-dimensional noninvertible map introduced in 2006 by Bamón, Kiwi, and Rivera-Letelier [arXiv 0508045] as a system displaying wild chaos. We present the geometric ingredients—in the form of different types of tangency bifurcations—that one encounters on the route to wild chaos.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Afrajmovich, V.S., Bykov, V.V., Sil\(^{\prime }\!\)nikov, L.P.: The origin and structure of the Lorenz attractor, (Trans: Dokl. Akad. Nauk SSSR 234(2), 336–339 (1977)). Sov. Phys. Dokl. 22, 253–255 (1977)

    Google Scholar 

  2. Afrajmovich, V.S., Bykov, V.V., Sil\(^{\prime }\!\)nikov, L.P.: On structurally unstable attracting limit sets of Lorenz attractor type. Trans. Mosc. Math. Soc. 44, 153–216 (1983)

    Google Scholar 

  3. Alligood, K.T., Sander, E., Yorke, J.A.: Crossing bifurcations and unstable dimension variability. Phys. Rev. Lett. 96, 244103 (2006)

    Article  Google Scholar 

  4. Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos—An Introduction to Dynamical Systems. Springer, New York (1996)

    MATH  Google Scholar 

  5. Aguirre, P., Doedel, E.J., Krauskopf, B., Osinga, H.M.: Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discr. Contin. Dynam. Syst.—Ser. A 29(4), 1309–1344 (2011)

    Google Scholar 

  6. Asaoka, M.: Hyperbolic sets exhibiting \(C^1\)-persistent homoclinic tangency for higher dimensions. Proc. Amer. Math. Soc. 136, 677–686 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Asaoka, M.: Erratum to Hyperbolic sets exhibiting \(C^1\)-persistent homoclinic tangency for higher dimensions. Proc. Amer. Math. Soc. 138, 1533 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bunimovich, L.A., Sinai, J.G.: Stochasticity of the attractor in the Lorenz model. In: Gaponov-Grekhov, A.V. (ed.) Nonlinear Waves, Proceedings of Winter School, pp. 212–226. Nauka Press, Moscow (1979)

    Google Scholar 

  9. Bamón, R., Kiwi, J., Rivera-Letelier, J.: Wild Lorenz like attractors. arXiv 0508045 (2006)

  10. Beyn, W.-J., Kleinkauf, J.-M.: The numerical computation of homoclinic orbits for maps. SIAM J. Numer. Anal. 34, 1207–1236 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Bonatti, C., Díaz, L., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. A global geometric and probabilistic perspective. Encycl. Math. Sci. 102. (2005)

    Google Scholar 

  12. Creaser, J., Krauskopf, B., Osinga, H.M.: \(\alpha \)-flips in the Lorenz System. The University of Auckland, Auckland (2014)

    Google Scholar 

  13. Doedel, E. J.: AUTO-07P: Continuation and bifurcation software for ordinary differential equations. with major contributions from Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Oldeman, B. E., Paffenroth, R. C., Sandstede, B., Wang, X. J., Zhang, C. Available at http://cmvl.cs.concordia.ca/auto

  14. Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global bifurcations of the Lorenz manifold. Nonlinearity 19(12), 2947–2972 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Doedel, E. J., Krauskopf, B., Osinga, H. M.: Global invariant manifolds in the transition to preturbulence in the Lorenz system. Indag. Math. (N.S.) 22(3–4), 222–240 (2011)

    Google Scholar 

  16. England, J.P., Krauskopf, B., Osinga, H.M.: Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse. SIAM J. Appl. Dynam. Syst. 3(2), 161–190 (2004)

    Google Scholar 

  17. England, J.P., Krauskopf, B., Osinga, H.M.: Bifurcations of stable sets in noninvertible planar maps. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 891–904 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ghaziani, R.K., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E.: Numerical continuation of connecting orbits of maps in Matlab. J. Differ. Equ. Appl. 15, 849–875 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ghrist, R., Holmes, P. J., Sullivan, M. C.: Knots and Links in Three-Dimensional Flows. Lecture Notes in Mathematics 1654. Springer, Berlin (1997)

    Google Scholar 

  20. Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeeze Land. Wiley-Interscience, New York (2004)

    Google Scholar 

  21. Gonchenko, S.V., Ovsyannikov, I.I., Simó, C., Turaev, D.: Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15, 3493–3508 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gonchenko, S.V., Shilnikov, L.P., Turaev, D.: On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors. Regul. Chaotic Dyn. 14, 137–147 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Govaerts, W., Kuznetsov, Y.A., Ghaziani, R.K., Meijer, H.G.E.: Cl_MatContM: a toolbox for continuation and bifurcation of cycles of maps (2008). Available via http://sourceforge.net/projects/matcont

  24. Guckenheimer, J.: A strange strange attractor. In: Marsden, J.E., McCracken, M. (eds.) The Hopf Bifurcation and its Applications, pp. 368–382. Springer, New York (1976)

    Chapter  Google Scholar 

  25. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd edn. Springer, New York (1986)

    Google Scholar 

  26. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 59–72 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

    Article  MATH  Google Scholar 

  28. Hittmeyer, S., Krauskopf, B., Osinga, H.M.: Interacting global invariant sets in a planar map model of wild chaos. SIAM J. Appl. Dynam. Syst. 12(3), 1280–1329 (2013)

    Google Scholar 

  29. Kaplan, J.L., Yorke, J.A.: Preturbulence: a regime observed in a fluid flow model of Lorenz. Commun. Math. Phys. 67, 93–108 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  30. Krauskopf, B., Osinga, H.M.: Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dynam. Sys. 2(4), 546–569 (2003)

    Google Scholar 

  31. Krauskopf, B., Osinga, H.M.: Computing invariant manifolds via the continuation of orbit segments. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems. Understanding Complex Systems, pp. 117–157. Springer, New York (2007)

    Google Scholar 

  32. Krauskopf, B., Osinga, H.M., Peckham, B.B.: Unfolding the cusp-cusp bifurcation of planar endomorphisms. SIAM J. Appl. Dynam. Syst. 6(2), 403–440 (2007)

    Google Scholar 

  33. Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 763–791 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kuznetsov, Yu, A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  35. Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmosph. Sci. 20, 130–141 (1963)

    Article  Google Scholar 

  36. Moreira, C.G.: There are no \(C^1\)-stable intersections of regular Cantor sets. Acta Math. 206, 311–323 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  37. Newhouse, S.E.: The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Publ. Math. IHES 50(1), 101–151 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  38. Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York (1982)

    Book  MATH  Google Scholar 

  39. Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  40. Perelló, C.: Intertwining invariant manifolds and Lorenz attractor. In: Global theory of dynamical systems. Proceedings of International Conference, Northwestern University, Evanston, Ill., 1979, Lecture Notes in Math, vol. 819, pp. 375–378. Springer, Berlin (1979)

    Google Scholar 

  41. Rand, D.: The topological classification of Lorenz attractors. Math. Proc. Cambridge Philos. Soc. 83, 451–460 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  42. Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press LLC, Boca Raton (1999)

    MATH  Google Scholar 

  43. Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer, New York (1982)

    Google Scholar 

  44. Sinai, J.G., Vul, E.B.: Hyperbolicity conditions for the Lorenz model. Physica D 2, 3–7 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  45. Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197–1202 (1999)

    Article  MATH  Google Scholar 

  46. Turaev, D.V., Shilnikov, L.P.: An example of a wild strange attractor. Mat. Sb. 189, 291–314 (1998)

    Article  MathSciNet  Google Scholar 

  47. Turaev, D.V., Shilnikov, L.P.: Pseudo-hyperbolicity and the problem on periodic perturbations of Lorenz-like attractors. Russian Dokl. Math. 77, 17–21 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  48. Williams, R.F.: The structure of Lorenz attractors. Publ. Math. IHES 50, 101–152 (1979)

    Article  Google Scholar 

  49. Zhang, W., Krauskopf, B., Kirk, V.: How to find a codimension-one heteroclinic cycle between two periodic orbits. Discr. Contin. Dynam. Syst.–Ser. A 32(8), 2825–2851 (2012)

    Google Scholar 

Download references

Acknowledgments

The work on the Lorenz system presented here has been performed in collaboration with Eusebius Doedel. We acknowlegde his contribution to the computation of the Lorenz attractor as shown in Fig. 1 and of the Lorenz manifold on the sphere in Figs. 2 and 3; moreover, the leaves of the stable foliation in Fig. 5 were computed with AUTO demo files that he developed recently. HMO and BK thank the organisers of ICDEA 2013 for their support, financial and otherwise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hinke M Osinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Osinga, H.M., Krauskopf, B., Hittmeyer, S. (2014). Chaos and Wild Chaos in Lorenz-Type Systems. In: AlSharawi, Z., Cushing, J., Elaydi, S. (eds) Theory and Applications of Difference Equations and Discrete Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44140-4_4

Download citation

Publish with us

Policies and ethics