Chaos and Wild Chaos in Lorenz-Type Systems

  • Hinke M OsingaEmail author
  • Bernd Krauskopf
  • Stefanie Hittmeyer
Conference paper
Part of the Springer Proceedings in Mathematics & Statistics book series (PROMS, volume 102)


This contribution provides a geometric perspective on the type of chaotic dynamics that one finds in the original Lorenz system and in a higher-dimensional Lorenz-type system. The latter provides an example of a system that features robustness of homoclinic tangencies; one also speaks of ‘wild chaos’ in contrast to the ‘classical chaos’ where homoclinic tangencies accumulate on one another, but do not occur robustly in open intervals in parameter space. Specifically, we discuss the manifestation of chaotic dynamics in the three-dimensional phase space of the Lorenz system, and illustrate the geometry behind the process that results in its description by a one-dimensional noninvertible map. For the higher-dimensional Lorenz-type system, the corresponding reduction process leads to a two-dimensional noninvertible map introduced in 2006 by Bamón, Kiwi, and Rivera-Letelier [arXiv 0508045] as a system displaying wild chaos. We present the geometric ingredients—in the form of different types of tangency bifurcations—that one encounters on the route to wild chaos.


Phase Portrait Chaotic Attractor Lorenz System Homoclinic Bifurcation Lorenz Attractor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work on the Lorenz system presented here has been performed in collaboration with Eusebius Doedel. We acknowlegde his contribution to the computation of the Lorenz attractor as shown in Fig. 1 and of the Lorenz manifold on the sphere in Figs. 2 and 3; moreover, the leaves of the stable foliation in Fig. 5 were computed with AUTO demo files that he developed recently. HMO and BK thank the organisers of ICDEA 2013 for their support, financial and otherwise.


  1. 1.
    Afrajmovich, V.S., Bykov, V.V., Sil\(^{\prime }\!\)nikov, L.P.: The origin and structure of the Lorenz attractor, (Trans: Dokl. Akad. Nauk SSSR 234(2), 336–339 (1977)). Sov. Phys. Dokl. 22, 253–255 (1977)Google Scholar
  2. 2.
    Afrajmovich, V.S., Bykov, V.V., Sil\(^{\prime }\!\)nikov, L.P.: On structurally unstable attracting limit sets of Lorenz attractor type. Trans. Mosc. Math. Soc. 44, 153–216 (1983)Google Scholar
  3. 3.
    Alligood, K.T., Sander, E., Yorke, J.A.: Crossing bifurcations and unstable dimension variability. Phys. Rev. Lett. 96, 244103 (2006)CrossRefGoogle Scholar
  4. 4.
    Alligood, K.T., Sauer, T.D., Yorke, J.A.: Chaos—An Introduction to Dynamical Systems. Springer, New York (1996)zbMATHGoogle Scholar
  5. 5.
    Aguirre, P., Doedel, E.J., Krauskopf, B., Osinga, H.M.: Investigating the consequences of global bifurcations for two-dimensional invariant manifolds of vector fields. Discr. Contin. Dynam. Syst.—Ser. A 29(4), 1309–1344 (2011)Google Scholar
  6. 6.
    Asaoka, M.: Hyperbolic sets exhibiting \(C^1\)-persistent homoclinic tangency for higher dimensions. Proc. Amer. Math. Soc. 136, 677–686 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Asaoka, M.: Erratum to Hyperbolic sets exhibiting \(C^1\)-persistent homoclinic tangency for higher dimensions. Proc. Amer. Math. Soc. 138, 1533 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bunimovich, L.A., Sinai, J.G.: Stochasticity of the attractor in the Lorenz model. In: Gaponov-Grekhov, A.V. (ed.) Nonlinear Waves, Proceedings of Winter School, pp. 212–226. Nauka Press, Moscow (1979)Google Scholar
  9. 9.
    Bamón, R., Kiwi, J., Rivera-Letelier, J.: Wild Lorenz like attractors. arXiv 0508045 (2006)
  10. 10.
    Beyn, W.-J., Kleinkauf, J.-M.: The numerical computation of homoclinic orbits for maps. SIAM J. Numer. Anal. 34, 1207–1236 (1997)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Bonatti, C., Díaz, L., Viana, M.: Dynamics Beyond Uniform Hyperbolicity. A global geometric and probabilistic perspective. Encycl. Math. Sci. 102. (2005)Google Scholar
  12. 12.
    Creaser, J., Krauskopf, B., Osinga, H.M.: \(\alpha \)-flips in the Lorenz System. The University of Auckland, Auckland (2014)Google Scholar
  13. 13.
    Doedel, E. J.: AUTO-07P: Continuation and bifurcation software for ordinary differential equations. with major contributions from Champneys, A. R., Fairgrieve, T. F., Kuznetsov, Yu. A., Oldeman, B. E., Paffenroth, R. C., Sandstede, B., Wang, X. J., Zhang, C. Available at
  14. 14.
    Doedel, E.J., Krauskopf, B., Osinga, H.M.: Global bifurcations of the Lorenz manifold. Nonlinearity 19(12), 2947–2972 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Doedel, E. J., Krauskopf, B., Osinga, H. M.: Global invariant manifolds in the transition to preturbulence in the Lorenz system. Indag. Math. (N.S.) 22(3–4), 222–240 (2011)Google Scholar
  16. 16.
    England, J.P., Krauskopf, B., Osinga, H.M.: Computing one-dimensional stable manifolds and stable sets of planar maps without the inverse. SIAM J. Appl. Dynam. Syst. 3(2), 161–190 (2004)Google Scholar
  17. 17.
    England, J.P., Krauskopf, B., Osinga, H.M.: Bifurcations of stable sets in noninvertible planar maps. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 891–904 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Ghaziani, R.K., Govaerts, W., Kuznetsov, Y.A., Meijer, H.G.E.: Numerical continuation of connecting orbits of maps in Matlab. J. Differ. Equ. Appl. 15, 849–875 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Ghrist, R., Holmes, P. J., Sullivan, M. C.: Knots and Links in Three-Dimensional Flows. Lecture Notes in Mathematics 1654. Springer, Berlin (1997)Google Scholar
  20. 20.
    Gilmore, R., Lefranc, M.: The Topology of Chaos: Alice in Stretch and Squeeze Land. Wiley-Interscience, New York (2004)Google Scholar
  21. 21.
    Gonchenko, S.V., Ovsyannikov, I.I., Simó, C., Turaev, D.: Three-dimensional Hénon-like maps and wild Lorenz-like attractors. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15, 3493–3508 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Gonchenko, S.V., Shilnikov, L.P., Turaev, D.: On global bifurcations in three-dimensional diffeomorphisms leading to wild Lorenz-like attractors. Regul. Chaotic Dyn. 14, 137–147 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Govaerts, W., Kuznetsov, Y.A., Ghaziani, R.K., Meijer, H.G.E.: Cl_MatContM: a toolbox for continuation and bifurcation of cycles of maps (2008). Available via
  24. 24.
    Guckenheimer, J.: A strange strange attractor. In: Marsden, J.E., McCracken, M. (eds.) The Hopf Bifurcation and its Applications, pp. 368–382. Springer, New York (1976)CrossRefGoogle Scholar
  25. 25.
    Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 2nd edn. Springer, New York (1986)Google Scholar
  26. 26.
    Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES 50, 59–72 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Hénon, M.: A two-dimensional mapping with a strange attractor. Commun. Math. Phys. 50(1), 69–77 (1976)CrossRefzbMATHGoogle Scholar
  28. 28.
    Hittmeyer, S., Krauskopf, B., Osinga, H.M.: Interacting global invariant sets in a planar map model of wild chaos. SIAM J. Appl. Dynam. Syst. 12(3), 1280–1329 (2013)Google Scholar
  29. 29.
    Kaplan, J.L., Yorke, J.A.: Preturbulence: a regime observed in a fluid flow model of Lorenz. Commun. Math. Phys. 67, 93–108 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Krauskopf, B., Osinga, H.M.: Computing geodesic level sets on global (un)stable manifolds of vector fields. SIAM J. Appl. Dynam. Sys. 2(4), 546–569 (2003)Google Scholar
  31. 31.
    Krauskopf, B., Osinga, H.M.: Computing invariant manifolds via the continuation of orbit segments. In: Krauskopf, B., Osinga, H.M., Galán-Vioque, J. (eds.) Numerical Continuation Methods for Dynamical Systems. Understanding Complex Systems, pp. 117–157. Springer, New York (2007)Google Scholar
  32. 32.
    Krauskopf, B., Osinga, H.M., Peckham, B.B.: Unfolding the cusp-cusp bifurcation of planar endomorphisms. SIAM J. Appl. Dynam. Syst. 6(2), 403–440 (2007)Google Scholar
  33. 33.
    Krauskopf, B., Osinga, H.M., Doedel, E.J., Henderson, M.E., Guckenheimer, J., Vladimirsky, A., Dellnitz, M., Junge, O.: A survey of methods for computing (un)stable manifolds of vector fields. Internat. J. Bifur. Chaos Appl. Sci. Engrg. 15(3), 763–791 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Kuznetsov, Yu, A.: Elements of Applied Bifurcation Theory, 2nd edn. Springer, New York (1998)zbMATHGoogle Scholar
  35. 35.
    Lorenz, E.N.: Deterministic nonperiodic flows. J. Atmosph. Sci. 20, 130–141 (1963)CrossRefGoogle Scholar
  36. 36.
    Moreira, C.G.: There are no \(C^1\)-stable intersections of regular Cantor sets. Acta Math. 206, 311–323 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  37. 37.
    Newhouse, S.E.: The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Publ. Math. IHES 50(1), 101–151 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    Palis, J., de Melo, W.: Geometric Theory of Dynamical Systems. Springer, New York (1982)CrossRefzbMATHGoogle Scholar
  39. 39.
    Palis, J., Takens, F.: Hyperbolicity and Sensitive Chaotic Dynamics at Homoclinic Bifurcations. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  40. 40.
    Perelló, C.: Intertwining invariant manifolds and Lorenz attractor. In: Global theory of dynamical systems. Proceedings of International Conference, Northwestern University, Evanston, Ill., 1979, Lecture Notes in Math, vol. 819, pp. 375–378. Springer, Berlin (1979)Google Scholar
  41. 41.
    Rand, D.: The topological classification of Lorenz attractors. Math. Proc. Cambridge Philos. Soc. 83, 451–460 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press LLC, Boca Raton (1999)zbMATHGoogle Scholar
  43. 43.
    Sparrow, C.: The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Springer, New York (1982)Google Scholar
  44. 44.
    Sinai, J.G., Vul, E.B.: Hyperbolicity conditions for the Lorenz model. Physica D 2, 3–7 (1981)CrossRefzbMATHMathSciNetGoogle Scholar
  45. 45.
    Tucker, W.: The Lorenz attractor exists. C. R. Acad. Sci. Paris Sér. I Math. 328(12), 1197–1202 (1999)CrossRefzbMATHGoogle Scholar
  46. 46.
    Turaev, D.V., Shilnikov, L.P.: An example of a wild strange attractor. Mat. Sb. 189, 291–314 (1998)CrossRefMathSciNetGoogle Scholar
  47. 47.
    Turaev, D.V., Shilnikov, L.P.: Pseudo-hyperbolicity and the problem on periodic perturbations of Lorenz-like attractors. Russian Dokl. Math. 77, 17–21 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  48. 48.
    Williams, R.F.: The structure of Lorenz attractors. Publ. Math. IHES 50, 101–152 (1979)CrossRefGoogle Scholar
  49. 49.
    Zhang, W., Krauskopf, B., Kirk, V.: How to find a codimension-one heteroclinic cycle between two periodic orbits. Discr. Contin. Dynam. Syst.–Ser. A 32(8), 2825–2851 (2012)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Hinke M Osinga
    • 1
    Email author
  • Bernd Krauskopf
    • 1
  • Stefanie Hittmeyer
    • 1
  1. 1.Department of MathematicsThe University of AucklandAucklandNew Zealand

Personalised recommendations