Skip to main content

Benford Solutions of Linear Difference Equations

  • Conference paper
  • First Online:
Theory and Applications of Difference Equations and Discrete Dynamical Systems

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 102))

Abstract

Benford’s Law (BL), a notorious gem of mathematics folklore, asserts that leading digits of numerical data are usually not equidistributed, as might be expected, but rather follow one particular logarithmic distribution. Since first recorded by Newcomb in 1881, this apparently counter-intuitive phenomenon has attracted much interest from scientists and mathematicians alike. This article presents a comprehensive overview of the theory of BL for autonomous linear difference equations. Necessary and sufficient conditions are given for solutions of such equations to conform to BL in its strongest form. The results extend and unify previous results in the literature. Their scope and limitations are illustrated by numerous instructive examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, T.C., Rolen, L., Stoehr, R.: Benford’s law for coefficients of modular forms and partition functions. Proc. Am. Math. Soc. 139, 1533–1541 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arnold, V.I.: Ordinary Differential Equations. Springer, Berlin (1992)

    Google Scholar 

  3. Benford, F.: The law of anomalous numbers. Proc. Am. Philos. Soc. 78, 551–572 (1938)

    Google Scholar 

  4. Benford Online Bibliography. http://www.benfordonline.net

  5. Berger, A.: Multi-dimensional dynamical systems and Benford’s law. Discrete Contin. Dyn. Syst. 13, 219–237 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berger, A., Eshun, G.: A characterization of Benford’s law in discrete-time linear systems. (In preparation) (2014)

    Google Scholar 

  7. Berger, A., Hill, T.P.: A basic theory of Benford’s law. Probab. Surv. 8, 1–126 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Berger, A., Hill, T.P.: Benfords law strikes back: no simple explanation in sight for mathematical gem. Math. Intell. 33, 8591 (2011)

    Article  MathSciNet  Google Scholar 

  9. Berger, A., Siegmund, S.: On the distribution of mantissae in nonautonomous difference equations. J. Difference Equ. Appl. 13, 829–845 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berger, A., Hill, T.P., Kaynar, B., Ridder, A.: Finite-state Markov chains obey Benford’s law. SIAM J. Matrix Anal. Appl. 32, 665–684 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brown, J.L., Duncan, R.L.: Modulo one uniform distribution of the sequence of logarithms of certain recursive sequences. Fibonacci Quart. 8, 482–486 (1970)

    MATH  MathSciNet  Google Scholar 

  12. Carslaw, C.A.P.N.: Anomalies in income numbers: evidence of goal oriented behavior. Account. Rev. 63, 321–327 (1988)

    Google Scholar 

  13. Cho, W.K.T., Gaines, B.J.: Breaking the (Benford) law: statistical fraud detection in campaign finance. Am. Statist. 61, 218–223 (2007)

    Article  MathSciNet  Google Scholar 

  14. Cohen, D.I.A., Katz, T.M.: Prime numbers and the first digit phenomenon. J. Number Theory 18, 261–268 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dajani, K., Kraikamp, C.: Ergodic Theory of Numbers. Carus Mathematical Monographs 29. Mathematical Association of America, Washington DC (2002)

    Google Scholar 

  16. Deckert, J., Myagkov, M., Ordeshook, P.C.: Benford’s law and the detection of election fraud. Polit. Anal. 19, 245–268 (2011)

    Article  Google Scholar 

  17. Diaconis, P.: The distribution of leading digits and uniform distribution mod 1. Ann. Probab. 5, 72–81 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  18. Diekmann, A.: Not the first digit! using Benford’s law to detect fraudulent scientific data. J. Appl. Stat. 34, 321–329 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Docampo, S., del Mar Trigo, M., Aira, M.J., Cabezudo, B., Flores-Moya, A.: Benfords law applied to aerobiological data and its potential as a quality control tool. Aerobiologia 25, 275–283 (2009)

    Article  Google Scholar 

  20. Duncan, R.L.: An application of uniform distributions to the Fibonacci numbers. Fibonacci Quart. 5, 137–140 (1967)

    MATH  MathSciNet  Google Scholar 

  21. Geyer, C.L., Williamson, P.P.: Detecting fraud in data sets using Benford’s law. Commun. Stat. Simul. Comput. 33, 229–246 (2004)

    MATH  MathSciNet  Google Scholar 

  22. Hill, T.P.: Base-invariance implies Benford’s law. Proc. Am. Math. Soc. 123, 887–895 (1995)

    MATH  Google Scholar 

  23. Hill, T.P.: The significant-digit phenomenon. Am. Math. Monthly 102, 322–327 (1995)

    Article  MATH  Google Scholar 

  24. Hill, T.P.: A statistical derivation of the significant-digit law. Stat. Sci. 10, 354–363 (1995)

    MATH  Google Scholar 

  25. Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  26. Kanemitsu, S., Nagasaka, K., Rauzy, G., Shiue, J-S.: On Benford’s law: the first digit problem. In: Probability Theory and Mathematical Statistics (Kyoto, 1986). Lecture Notes in Math. 1299, 158–169 (1988)

    Google Scholar 

  27. Kontorovich, A.V., Miller, S.J.: Benford’s law, values of \(L\)-functions and the \(3x+1\) problem. Acta Arith. 120, 269–297 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kuipers, L.: Remark on a paper by R.L. Duncan concerning the uniform distribution mod \(1\) of the sequence of the logarithms of the fibonacci numbers. Fibonacci Quart. 7, 465–466, 473 (1969)

    Google Scholar 

  29. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  30. Lagarias, J.C., Soundararajan, K.: Benford’s law for the \(3x+1\) function. J. Lond. Math. Soc. 74, 289–303 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Mebane, W.R.: Fraud in the 2009 presidential election in Iran? Chance 23, 6–15 (2010)

    Article  Google Scholar 

  32. Miller, S.J., Nigrini, M.J.: Order statistics and Benford’s law. Int. J. Math. Math. Sci. 382948 (2008)

    Google Scholar 

  33. Moore, G.B., Benjamin, C.O.: Using Benford’s law for fraud detection. Intern. Auditing 19, 4–9 (2004)

    Google Scholar 

  34. Myerson, G., van der Poorten, A.J.: Some problems concerning recurrence sequences. Am. Math. Monthly 102, 698–705 (1995)

    Article  MATH  Google Scholar 

  35. Nagasaka, K., Shiue, J.-S.: Benford’s law for linear recurrence sequences. Tsukuba J. Math. 11, 341–351 (1987)

    MATH  MathSciNet  Google Scholar 

  36. Newcomb, S.: Note on the frequency of use of the different digits in natural numbers. Am. J. Math. 4, 39–40 (1881)

    Article  MATH  MathSciNet  Google Scholar 

  37. Nigrini, M.J.: A taxpayer compliance application of Benford’s law. J. Am. Tax. Association 18, 72–91 (1996)

    Google Scholar 

  38. Nigrini, M.J.: Digital Analysis Using Benford’s Law: Tests Statistics for Auditors. Global Audit, Vancouver (2000)

    Google Scholar 

  39. Raimi, R.A.: The first digit problem. Am. Math. Monthly 83, 521–538 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  40. Roukema, B.F.: A first-digit anomaly in the 2009 Iranian presidential election. Preprint arXiv:0906.2789 (2009)

  41. Sambridge, M., Tkalčić, H., Jackson, A.: Benford’s law in the natural sciences. Geophys. Res. Lett. 37, L22301 (2010)

    Article  Google Scholar 

  42. Schatte, P.: On \(H_{\infty }\)-summability and the uniform distribution of sequences. Math. Nachr. 113, 237–243 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  43. Schatte, P.: On the uniform distribution of certain sequences and Benford’s law. Math. Nachr. 136, 271–273 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  44. Schürger, K.: Extensions of black-scholes processes and Benford’s law. Stochastic Process. Appl. 118, 1219–1243 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Strzałka, D.: On some properties of Benford’s law. J. Kore. Math. Soc. 47, 1055–1075 (2010)

    Article  MATH  Google Scholar 

  46. Waldschmidt, M.: Diophantine Approximation on Linear Algebraic Groups. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  47. Wintner, A.: On the cyclical distribution of the logarithms of the prime numbers. Q. J. Math. 6, 65–68 (1935)

    Article  Google Scholar 

  48. Wlodarski, J.: Fibonacci and lucas numbers tend to obey Benfords law. Fibonacci Quart. 9, 87–88 (1971)

    Google Scholar 

Download references

Acknowledgments

This work was supported by an Nserc Discovery Grant. The authors are grateful to T. Hill, A. Weiss, and R. ZweimĂĽller for helpful conversations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Berger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, A., Eshun, G. (2014). Benford Solutions of Linear Difference Equations. In: AlSharawi, Z., Cushing, J., Elaydi, S. (eds) Theory and Applications of Difference Equations and Discrete Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44140-4_2

Download citation

Publish with us

Policies and ethics