Optical Properties of Correlated Electrons

Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 180)


Optical spectra provide a versatile tool for studying the electronic properties of matter. In addition, the absolute spectral weight of an optical spectrum reveals optical sum-rules, which are one of the most powerful tools of experimental and theoretical physics providing access to deeply rooted quantities such as the effective mass of the charge carriers and their kinetic energy. The formalism for the optical conductivity of correlated electrons is presented in this chapter for general values of the inverse wavelength \(q\) and general band dispersion \(\epsilon _k\) of the electrons. The corresponding sumrule is found to have a characteristic \(q\)-dependence for the nearest-neighbour tight binding model, causing in this case a vanishing of spectral weight for \(q\) at the Brillouin-zone boundary, i.e. for \(qa=\pi \). These findings are of possible importance for \(k\)-resolved infrared spectroscopy, a technique which is in full development at the moment.


Vector Potential Current Operator Optical Conductivity Electron Energy Loss Spectroscopy Regular Part 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



It is a pleasure to thank Adrian Kantian, Christophe Berthod, Alexey Kuzmenko and Gianni Blatter for their comments. This work was supported by the SNSF through Grants No. 200020-140761 and 200020-135085, and the National Center of Competence in Research (NCCR) Materials with Novel Electronic PropertiesMaNEP.


  1. 1.
    D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, K. Haule, Rev. Mod. Phys. 83, 471 (2011)CrossRefADSGoogle Scholar
  2. 2.
    F. Keilmann, R. Hillenbrand, Phil. Trans. A 362, 787 (2004)CrossRefADSGoogle Scholar
  3. 3.
    F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, R. Hilenbrand, Nano Lett. 12, 3973 (2012)CrossRefADSGoogle Scholar
  4. 4.
    J. Chen, M. Badioli, p Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A.Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, F.H.L. Koppens, Nature 487, 77 (2012)Google Scholar
  5. 5.
    M. Dressel, G.G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002)CrossRefGoogle Scholar
  6. 6.
    C.F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995)Google Scholar
  7. 7.
    D. Pines, P. Nozières, The Theory of Quantum Liquids, Part I (Benjamin, New York, 1966)Google Scholar
  8. 8.
    F.P. Maldague, Phys. Rev. B 16, 2437 (1977)CrossRefADSGoogle Scholar
  9. 9.
    G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum, New York, 1990), pp. 207–223CrossRefGoogle Scholar
  10. 10.
    A. Millis, in Strong Interactions in Low Dimensions, Physics and Chemistry of Materials with Low-Dimensions, Vol. 25, (Springer, Dordrecht, 2004)Google Scholar
  11. 11.
    D. van der Marel, in Strong Interactions in Low Dimensions, Physics and Chemistry of Materials with Low-Dimensions, Vol. 25, (Springer, Dordrecht, 2004)Google Scholar
  12. 12.
    E. van Heumen, D. van der Marel, in Lectures on the Physics of Strongly Correlated Systems XI, ed. by A. Avella, F. Manzini, (American Institute of Physics, New York, 2007)Google Scholar
  13. 13.
    A. Damascelli, D. van der Marel, M. Grueninger, C. Presura, T.T.M. Palstra, J. Jegoudez, A. Revcolevschi, Phys. Rev. Lett. 81, 918 (1998)CrossRefADSGoogle Scholar
  14. 14.
    C.N. Presura, Ph.D. thesis, Rijksuniversiteit Groningen, 2003Google Scholar
  15. 15.
    S. Nakai, N. Nuecker, H. Romberg, M. Alexander, J. Fink, Phys. Scripta 41, 596 (1990)Google Scholar
  16. 16.
    F.P. Mena, J.F. DiTusa, D. van der Marel, G. Aeppli, D.P. Young, A. Damascelli, J.A. Mydosh, Phys. Rev. B 73, 085205 (2006)Google Scholar
  17. 17.
    S. I. Mirzaei, D. Stricker, J. N. Hancock, C. Berthod, A. Georges, E. van Heumen, M. K. Chan, X. Zhao, Y. Li, M. Greven, N. Barisic, D. van der Marel, Proc. Natl. Acad. Sci. USA 110, 5774 (2013)Google Scholar
  18. 18.
    F. Carbone, A.B. Kuzmenko, H.J.A. Molegraaf, E. van Heumen, E. Giannini, D. van der Marel, Phys. Rev. B 74, 024502 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Département de Physique de la Matière CondenséeUniversité de GenèveGenève 4Switzerland

Personalised recommendations