Skip to main content

Optical Properties of Correlated Electrons

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 180))

Abstract

Optical spectra provide a versatile tool for studying the electronic properties of matter. In addition, the absolute spectral weight of an optical spectrum reveals optical sum-rules, which are one of the most powerful tools of experimental and theoretical physics providing access to deeply rooted quantities such as the effective mass of the charge carriers and their kinetic energy. The formalism for the optical conductivity of correlated electrons is presented in this chapter for general values of the inverse wavelength \(q\) and general band dispersion \(\epsilon _k\) of the electrons. The corresponding sumrule is found to have a characteristic \(q\)-dependence for the nearest-neighbour tight binding model, causing in this case a vanishing of spectral weight for \(q\) at the Brillouin-zone boundary, i.e. for \(qa=\pi \). These findings are of possible importance for \(k\)-resolved infrared spectroscopy, a technique which is in full development at the moment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Equation (9.50) is obtained if one represents the current operators as commutators of the hamiltonian with the dipole operator defined in (9.68). The expectation value of the hamiltonian is used to cancel out the factor \(\omega _{mn}\) in the denominator of the expression. In the final step the commutator of the dipole operator and the current operator is calculated, which completes the derivation of (9.50).

  2. 2.

    One can pose the question whether the corresponding expression for the current density satisfies the continuity equation. On a fundamental level this relation expresses the conservation of the number of particles. This condition corresponds to the local constraint \(\nabla \cdot {\varvec{J}} + \partial \rho /\partial t=0\) in continuous space. Although there is no obvious way to define a quantity equivalent to \(\nabla \cdot \varvec{J}\) for a lattice, the situation is in fact somewhat simpler. It is sufficient to verify that removal of an electron from a given site \(\varvec{r}_m\) is always compensated by the creation of an electron elsewhere in the lattice. Since the current operator in (9.23) swaps electrons between different sites, the conservation of particle number is therefor built in the definition of the current operator

References

  1. D.N. Basov, R.D. Averitt, D. van der Marel, M. Dressel, K. Haule, Rev. Mod. Phys. 83, 471 (2011)

    Article  ADS  Google Scholar 

  2. F. Keilmann, R. Hillenbrand, Phil. Trans. A 362, 787 (2004)

    Article  ADS  Google Scholar 

  3. F. Huth, A. Govyadinov, S. Amarie, W. Nuansing, F. Keilmann, R. Hilenbrand, Nano Lett. 12, 3973 (2012)

    Article  ADS  Google Scholar 

  4. J. Chen, M. Badioli, p Alonso-Gonzlez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenović, A. Centeno, A. Pesquera, P. Godignon, A.Z. Elorza, N. Camara, F. Javier Garca de Abajo, R. Hillenbrand, F.H.L. Koppens, Nature 487, 77 (2012)

    Google Scholar 

  5. M. Dressel, G.G. Grüner, Electrodynamics of Solids: Optical Properties of Electrons in Matter (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  6. C.F. Klingshirn, Semiconductor Optics (Springer, Berlin, 1995)

    Google Scholar 

  7. D. Pines, P. Nozières, The Theory of Quantum Liquids, Part I (Benjamin, New York, 1966)

    Google Scholar 

  8. F.P. Maldague, Phys. Rev. B 16, 2437 (1977)

    Article  ADS  Google Scholar 

  9. G.D. Mahan, Many-Particle Physics, 2nd edn. (Plenum, New York, 1990), pp. 207–223

    Book  Google Scholar 

  10. A. Millis, in Strong Interactions in Low Dimensions, Physics and Chemistry of Materials with Low-Dimensions, Vol. 25, (Springer, Dordrecht, 2004)

    Google Scholar 

  11. D. van der Marel, in Strong Interactions in Low Dimensions, Physics and Chemistry of Materials with Low-Dimensions, Vol. 25, (Springer, Dordrecht, 2004)

    Google Scholar 

  12. E. van Heumen, D. van der Marel, in Lectures on the Physics of Strongly Correlated Systems XI, ed. by A. Avella, F. Manzini, (American Institute of Physics, New York, 2007)

    Google Scholar 

  13. A. Damascelli, D. van der Marel, M. Grueninger, C. Presura, T.T.M. Palstra, J. Jegoudez, A. Revcolevschi, Phys. Rev. Lett. 81, 918 (1998)

    Article  ADS  Google Scholar 

  14. C.N. Presura, Ph.D. thesis, Rijksuniversiteit Groningen, 2003

    Google Scholar 

  15. S. Nakai, N. Nuecker, H. Romberg, M. Alexander, J. Fink, Phys. Scripta 41, 596 (1990)

    Google Scholar 

  16. F.P. Mena, J.F. DiTusa, D. van der Marel, G. Aeppli, D.P. Young, A. Damascelli, J.A. Mydosh, Phys. Rev. B 73, 085205 (2006)

    Google Scholar 

  17. S. I. Mirzaei, D. Stricker, J. N. Hancock, C. Berthod, A. Georges, E. van Heumen, M. K. Chan, X. Zhao, Y. Li, M. Greven, N. Barisic, D. van der Marel, Proc. Natl. Acad. Sci. USA 110, 5774 (2013)

    Google Scholar 

  18. F. Carbone, A.B. Kuzmenko, H.J.A. Molegraaf, E. van Heumen, E. Giannini, D. van der Marel, Phys. Rev. B 74, 024502 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Adrian Kantian, Christophe Berthod, Alexey Kuzmenko and Gianni Blatter for their comments. This work was supported by the SNSF through Grants No. 200020-140761 and 200020-135085, and the National Center of Competence in Research (NCCR) Materials with Novel Electronic PropertiesMaNEP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk van der Marel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van der Marel, D. (2015). Optical Properties of Correlated Electrons. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44133-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44133-6_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44132-9

  • Online ISBN: 978-3-662-44133-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics