Advertisement

Pressure Probes

Chapter
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 180)

Abstract

The physical properties of correlated materials, like low-dimensional organic conductors, cuprate superconductors, heavy-fermion metals, or the recently discovered iron-based superconductors, depend on a delicate interplay of different physical effects. External pressure is an ideal tool to tune this interplay. The resulting phase diagrams and their study is essential for the understanding of the underlying physical principles. This chapter is intended to give an introduction to modern pressure techniques which are used for investigations of strongly correlated materials. We provide a short overview of the different types of pressure cells. Thereby, we focus on the experimental capabilities and point at limits and problems which might occur in a pressure experiment. In a survey of experimental probes we outline the specifics of the experimental setup for pressure studies in comparison with the setup used at ambient pressure. We further address the particular restrictions on the experimental resolution in the pressure study and discuss the accessible parameter range in pressure, temperature and magnetic field. The covered physical probes include, electrical- and thermal-transport measurements, thermodynamic and magnetic studies, magnetic-resonance experiments, and structural and spectroscopic investigations. On the example of heavy-fermion superconductors we elucidate the contributions of pressure experiments on the discovery and understanding of new emerging physical phenomena in correlated electron materials.

Keywords

Antiferromagnetic Order Detection Coil FFLO State dHvA Oscillation Commercial Squid Magnetometer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I would like to thank C. Klausnitzer for the careful preparation of the illustrations. Furthermore, I am indebted to K. Mydeen and E. Lengyel for valuable comments on the manuscript.

References

  1. 1.
    M.I. Eremets, High Pressure Extperimental Methods (Oxfrord University Press, Oxford, 1996)Google Scholar
  2. 2.
    T. Matsumoto, Rev. High Press. Sci. Techn. 12, 280 (2002). doi: 10.4131/jshpreview.12.280
  3. 3.
    I.R. Walker, Rev. Sci. Instrum. 70, 3402 (1999). doi: 10.1063/1.1149927
  4. 4.
    Y. Uwatoko, S. Todo, K. Ueda, A. Uchida, M. Kosaka, N. Mori, T. Matsumoto, J. Phys.: Condens. Matter 14, 11291 (2002). doi: 10.1088/0953-89844/44/469
  5. 5.
    Y. Uwatoko, M. Hedo, N. Kurita, M. Kodea, M. Abliz, T. Matsumoto, Phys. B 329—-333, 1658 (2003). doi: 10.1016/s0921-4526(02)02449-3
  6. 6.
    H. Taniguchi, S. Takeda, R. Satoh, A. Taniguchi, H. Komatsu, K. Satoh, Rev. Sci. Instrum. 81, 033903 (2010). doi: 10.1063/1.3310197
  7. 7.
    C. Pfleiderer, E. Bedin, B. Salce, Rev. Sci. Instrum. 68, 3120 (1997). doi: 10.1063/1.1148254
  8. 8.
    B. Salce, J. Thomasson, A. Demuer, J.J. Blanchard, J.M. Martinod, L. Devoille, A. Guillaume, Rev. Sci. Instrum. 71, 2461 (2000). doi: 10.1063/1.1150664
  9. 9.
    M. Nicklas, (2007). UnpublishedGoogle Scholar
  10. 10.
    T. Nakanishi, Rev. High Press. Sci. Techn. 11, 187 (2001). doi: 10.4131/jshpreview.11.187
  11. 11.
    T. Nakanishi, N. Takeshita, N. Mori, Rev. Sci. Instrum. 73, 1828 (2002). doi: 10.1063/1.1458044
  12. 12.
    T. Nakanishi, M. Nicklas, G. Sparn, F. Steglich, J. Phys. Soc. Jpn. 76SA, 223 (2007). doi: 10.1143/JPSJS.76SA.223
  13. 13.
    A.S. Rüetschi, D. Jaccard, Rev. Sci. Instrum. 78, 123901 (2007). doi: 10.1063/1.2818788
  14. 14.
    E. Colombier, D. Braithwaite, Rev. Sci. Instrum. 78, 1 (2007). doi: 10.1063/1.2778629
  15. 15.
    O.B. Tsiok, V.V. Bredikhin, V.A. Sidorov, L.G. Khvostantsev, High Press. Res. 10, 523 (1992). doi: 10.1080/08957959208201471
  16. 16.
    L.G. Khvostantsev, V.A. Sidorov, O.B. Tsiok, High pressure toroid cell: Applications in planetary and material sciences. Geophys. Monogr. Ser. 101, 89 (1998)Google Scholar
  17. 17.
    A.E. Petrova, V.A. Sidorov, S.M. Stishov, Physica B 359—-361, 1463 (2005). doi: 10.1016/j.physb.2005.01.454
  18. 18.
    W.A. Bassett, High Press. Res. 29, 163 (2009). doi: 10.1080/08957950802597239
  19. 19.
    A. Jayaraman, Rev. Mod. Phys 55, 65 (1983). doi: 10.1103/RevModPhys.55.65
  20. 20.
    D.J. Dunstan, I.L. Spain, J. Phys. E: Sci. Instrum. 22, 913 (1989). doi: 10.1088/0022-3735/221/004
  21. 21.
    I.L. Spain, D.J. Dunstan, J. Phys. E: Sci. Instrum. 22, 923 (1989). doi: 10.1088/0022-3735/221/005
  22. 22.
    G.Y. Machavariani, M.P. Pasternak, G.R. Hearne, Rev. Sci. Instrum. 69, 1423 (1998). doi: 10.1063/1.1148775
  23. 23.
    M. Kano, N. Kurita, M. Hedo, Y. Uwatoko, S.W. Tozer, H.S. Suzuki, T. Onimaru, T. Sakakibara, J. Phys. Soc. Jpn. 76SA, 56 (2007). doi: 10.1143/JPSJS.76SA.56
  24. 24.
    A.G. Gavriliuk, A.A. Mironovich, V.V. Struzhkin, Rev. Sci. Instrum. 80, 043906 (2009). doi: 10.1063/1.3122051
  25. 25.
    G. Giriat, W. Wang, J.P. Attfield, A.D. Huxley, K.V. Kamenev, Rev. Sci. Instrum. 81, 073905 (2010). doi: 10.1063/1.3465311
  26. 26.
    T.C. Kobayashi, H. Hidaka, T. Fujiwara, M. Tanaka, K. Takeda, T. Akazawa, K. Shimizu, S. Kirita, R. Asai, H. Nakawaki, M. Nakashima, R. Settai, Y. Yamamoto, Y. Haga, Y. Ōnuki, J. Phys.: Condens. Matter 19, 125205 (2007). doi: 10.1088/0953-8984/19/12/125205
  27. 27.
    N. Mori, H. Takahashi, N. Takeshita, High Press. Res. 24, 225 (2004). doi: 10.1080/08957950410001661909
  28. 28.
    Y. Uwatoko, K. Matsubayashi, T. Matsumoto, N. Aso, M. Nishi, T. Fujiwara, M. Hedo, S. Tabata, K. Takagi, M. Tado, H. Kagi, Rev. High Press. Sci. Techn. 18, 230 (2008). doi: 10.4131/jshpreview.18.230
  29. 29.
    T. Hikita, T. Maruyama, N. Yamada, Jpn. J. Appl. Phys. 29, 2519 (1990). doi: 10.1143/jjap.29.2519
  30. 30.
    S.M. Stishov, A.E. Petrova, J. Phys. Soc. Jpn. 76SA, 212 (2007). doi: 10.1143/JPSJS.76SA.212
  31. 31.
    O.P. Welzel, F.M. Grosche, Rev. Sci. Instrum. 82, 033901 (2011). doi: 10.1063/1.3541793
  32. 32.
    S.T. Weir, J. Akella, C. Aracne-Ruddle, Y.K. Vohra, S.A. Catledge, Appl. Phys. Lett. 77, 3400 (2000). doi: 10.1063/1.1326838
  33. 33.
    D.D. Jackson, C. Aracne-Ruddle, V. Malba, S.T. Weir, S.A. Catledge, Y.K. Vohra, Rev. Sci. Instrum. 74, 2467 (2003). doi: 10.1063/1.1544084
  34. 34.
    X. Ji-an, M. Ho-kwang, R.J. Hemley, E. Hines, J. Phys.: Condens. Matter 14, 11543 (2002). doi: 10.1088/0953-89844/44/513
  35. 35.
    J.D. Thompson, Rev. Sci. Instrum. 55, 231 (1984). doi: 10.1063/1.1137730
  36. 36.
    O.E. Andersson, B. Sundqvist, Rev. Sci. Instrum. 68, 1344 (1997). doi: 10.1063/1.1147868
  37. 37.
    L.H. Dmowski, E. Litwin-Staszewska, Meas. Sci. Technol. 10, 343 (1999). doi: 10.1088/0957-02330/5/001
  38. 38.
    L.H. Dmowski, J. Przybytek, E. Litwin-Staszewska, High Press. Res. 19, 743 (2000). doi: 10.1080/08957950008202577
  39. 39.
    F.P. Bundy, Phys. Rev. 110, 314 (1958). doi: 10.1103/PhysRev.110.314
  40. 40.
    G. Andersson, B. Sundqvist, G. Bäckström, J. Appl. Phys. 65, 3943 (1989). doi: 10.1063/1.343360
  41. 41.
    A. Eiling, J.S. Schilling, J. Phys. F: Met. Phys. 623, 11 (1981). doi: 10.1088/0305-46081/3/010
  42. 42.
    B. Bireckoven, J. Wittig, J. Phys. E: Sci. Instrum. 21, 841 (1988). doi: 10.1088/0022-3735/21/9/004
  43. 43.
    J.D. Barnett, S. Block, G.J. Piermarini, Rev. Sci. Instrum. 44, 1 (1973). doi: 10.1063/1.1685943
  44. 44.
    G.J. Piermarini, S. Block, Rev. Sci. Instrum. 46, 973 (1975). doi: 10.1063/1.1134381
  45. 45.
    H.K. Mao, J. Xu, P.M. Bell, J. Geophys. Res. 91, 4673 (1986). doi: 10.1029/JB091iB05p04673
  46. 46.
    R.J. Hemley, C.S. Zha, A.P. Jephcoat, H.K. Mao, L.W. Finger, D.E. Cox, Phys. Rev. B 39, 11820 (1989). doi: 10.1103/PhysRevB.39.11820
  47. 47.
    D.D. Ragan, R. Gustavsen, D. Schiferl, J. Appl. Phys. 72, 5539 (1992). doi: 10.1063/1.351951
  48. 48.
    A.P. Reyes, E.T. Ahrens, R.H. Heffner, P.C. Hammel, J.D. Thompson, Rev. Sci. Instrum. 63, 3120 (1992). doi: 10.1063/1.1142564
  49. 49.
    H. Fukazawa, N. Yamatoji, Y. Kohori, C. Terakura, N. Takeshita, Y. Tokura, H. Takagi, Rev. Sci. Instrum. 78, 015106 (2007). doi: 10.1063/1.2426875
  50. 50.
    D.L. Decker, T.G. Worlton, J. Appl. Phys. 43, 4799 (1972). doi: 10.1063/1.1661013
  51. 51.
    w Yu, A.A. Aczel, T.J. Williams, S.L. Budko, N. Ni, P.C. Canfield, G.M. Luke, Phys. Rev. B 79, 020511 (2009). doi: 10.1103/PhysRevB.79.020511
  52. 52.
    N. Tateiwa, S. Ikeda, Y. Haga, T.D. Matsuda, M. Nakashima, D. Aoki, R. Settai, Y. Ōnuki, J. Phys.: Conf. Ser 150, 042206 (2009). doi: 10.1088/1742-6596/150/4/042206
  53. 53.
    D.D. Ragan, D.R. Clarke, D. Schiferl, Rev. Sci. Instrum. 67, 494 (1996). doi: 10.1063/1.1146627
  54. 54.
    T. Varga, A.P. Wilkinson, R.J. Angel, Rev. Sci. Instrum. 74, 4564 (2003). doi: 10.1063/1.1611993
  55. 55.
    Y. Shen, R.S. Kumar, M. Pravica, M.F. Nicol, Rev. Sci. Instrum. 75, 4450 (2004). doi: 10.1063/1.1786355
  56. 56.
    V.A. Sidorov, R.A. Sadykov, J. Phys.: Condens. Matter 17, S3005 (2005). doi: 10.1088/0953-8984/17/40/002
  57. 57.
    A.S. Kirichenko, A.V. Kornilov, V.M. Pudalov, Instrum. Exp. Tech. 48, 813 (2005). doi: 10.1007/s10786-005-0144-5
  58. 58.
    K. Yokogawa, K. Murata, H. Yoshino, S. Aoyama, Jpn. J. Appl. Phys. 46, 3636 (2007). doi: 10.1143/JJAP.46.3636
  59. 59.
    K. Murata, K. Yokogawa, H. Yoshino, S. Klotz, P. Munsch, A. Irizawa, M. Nishiyama, K. Iizuka, T. Nanba, T. Okada, Y. Shiraga, S. Aoyama, Rev. Sci. Instrum. 79, 085101 (2008). doi: 10.1063/1.2964117
  60. 60.
    S. Klotz, J.C. Chervin, P. Munsch, G.L. Marchand, J. Phys. D: Appl. Phys. 42, 075413 (2009). doi: 10.1088/0022-3727/42/7/075413
  61. 61.
    S. Klotz, L. Paumier, G.L. Marchand, P. Munsch, High Press. Res. 29, 649 (2009). doi: 10.1080/08957950903418194
  62. 62.
    Y. Feng, R. Jaramillo, J. Wang, Y. Ren, T.F. Rosenbaum, Rev. Sci. Instrum. 81, 041301 (2010). doi: 10.1063/1.3400212
  63. 63.
    E.S. Itskevich, V.F. Kraidenov, Cryogenics 15, 552 (1975). doi: 10.1016/0011-2275(75)90154-X
  64. 64.
    P. Andersson, G. Bäckström, Rev. Sci. Instrum. 47, 205 (1976). doi: 10.1063/1.1134581
  65. 65.
    S. Andersson, G. Bäckström, Rev. Sci. Instrum. 57, 1633 (1986). doi: 10.1063/1.1138542
  66. 66.
    G.F. Chen, I. Sakamoto, S. Ohara, T. Takami, H. Ikuta, U. Mizutani, Phys. Rev. B 69, 14420 (2004). doi: 10.1103/PhysRevB.69.014420
  67. 67.
    A.K. Singh, G. Ramani, Rev. Sci. Instrum. 49, 1324 (1978). doi: 10.1063/1.1135577
  68. 68.
    P.M. Chaikin, C. Weyl, G. Malfait, D. Jérome, Rev. Sci. Instrum. 52, 1397 (1981). doi: 10.1063/1.1136780
  69. 69.
    D. Jaccard, E. Vargoz, K. Alami-Yadri, H. Wilhelm, Rev. High Press. Sci. Techn. 7, 412 (1998). doi: 10.4131/jshpreview.7.412
  70. 70.
    H. Wilhelm, AC-calorimetry at high pressure and low temperature. Adv. in Solid State Phys. 43, 889 (2003). doi: 10.1007/978-3-540-44838-9_63 MathSciNetCrossRefGoogle Scholar
  71. 71.
    D. Jaccard, K. Sengupta, Rev. Sci. Instrum. 81, 041301 (2010). doi: 10.1063/1.3360819
  72. 72.
    D.A. Polvani, J.F. Meng, M. Hasegawa, J.V. Badding, Rev. Sci. Instrum. 70, 3586 (1999). doi: 10.1063/1.1149964
  73. 73.
    E.S. Choi, K. Haeyong, Y.J. Jo, W. Kang, Rev. Sci. Instrum. 73, 2999 (2002). doi: 10.1063/1.1489076
  74. 74.
    R. Borth, M. Nicklas, (2012). Unpublished.Google Scholar
  75. 75.
    C.F. Miclea, M. Nicklas, J.L. Sarrao, G. Sparn, F. Steglich, J.D. Thompson, AIP Conf. Proc. 850, 713 (2006). doi: 10.1063/1.2354906
  76. 76.
    C.F. Miclea, M. Nicklas, J.L. Sarrao, G. Sparn, F. Steglich, J.D. Thompson, Phys. B 378–380, 398 (2006). doi: 10.1016/j.physb.2006.01.174
  77. 77.
    J.C. Ho, N.E. Phillips, T.F. Smith, Phys. Rev. Lett. 17, 694 (1966). doi: 10.1103/PhysRevLett.17.694
  78. 78.
    A. Berton, J. Chaussy, B. Cornut, J. Odin, J. Paureau, J. Peyrard, Cryogenics 19, 543 (1979). doi: 10.1016/0011-2275(79)90009-2
  79. 79.
    F. Tomioka, I. Umehara, T. Ono, M. Hedo, Y. Uwatoko, N. Kimura, Jpn. J. Appl. Phys. 46, 3090 (2007). doi: 10.1143/jjap.46.3090
  80. 80.
    H. Wilhelm, T. Lühmann, T. Rus, F. Steglich, Rev. Sci. Instrum. 75, 2700 (2004). doi: 10.1063/1.1771486
  81. 81.
    R. Bachmann, J.F.J. DiSalvo, T.H. Geballe, R.L. Greene, R.E. Howard, C.N. King, H.C. Kirsch, K.N. Lee, R.E. Schwall, H.U. Thomas, R.B. Zubeck, Rev. Sci. Instrum. 43, 205 (1972). doi: 10.1063/1.1685596
  82. 82.
    M. Brando, Rev. Sci. Instrum. 80, 095112 (2009). doi: 10.1063/1.3202380
  83. 83.
    P.F. Sullivan, G. Seidel, Phys. Rev. 173, 679 (1968). doi: 10.1103/PhysRev.173.679
  84. 84.
    E. Gmelin, Thermochim. Acta 305, 1 (1997). doi: 10.1016/S0040-6031(97)00126-3
  85. 85.
    A. Demuer, C. Marcenat, J. Thomasson, R. Calemczuk, B. Salce, P. Lejay, D. Braithwaite, J. Flouquet, J. Low Temp. Phys. 120, 245 (2000). doi: 10.1023/a:1004685711942
  86. 86.
    E.S. Itskevich, V.F. Kraidenov, Instrum. Exp. Tech. 21, 1640 (1978)Google Scholar
  87. 87.
    A. Eichler, W. Gey, Rev. Sci. Instrum. 50, 1445 (1979). doi: 10.1063/1.1135737
  88. 88.
    F. Bouquet, Y. Wang, H. Wilhelm, D. Jaccard, A. Junod, Solid State Commun. 113, 367 (2000). doi: 10.1016/s0038-1098(99)00505-0
  89. 89.
    H. Wilhelm, D. Jaccard, J. Phys.: Condens. Matter 14, 10683 (2002). doi: 10.1088/0953-89844/44/357
  90. 90.
    K. Matsubayashi, M. Hedo, I. Umehara, N. Katayama, K. Ohgushi, A. Yamada, K. Munakata, T. Matsumoto, Y. Uwatoko, J. Phys.: Conf. Ser. 215, 012187 (2010). doi: 10.1088/1742-6596/215/1/012187
  91. 91.
    G. Oomi, T. Kagayama, Y. Ōnuki, T. Komatsubara, Phys. B 163, 557 (1990). doi: 10.1016/0921-4526(90)90268-Y
  92. 92.
    G. Oomi, T. Kagayama, Phys. B 201, 235 (1994). doi: 10.1016/0921-4526(94)91090-1
  93. 93.
    R.S. Kumar, A.L. Cornelius, J.L. Sarrao, Phys. Rev. B 70, 214526 (2004). doi: 10.1103/PhysRevB.70.214526
  94. 94.
    R. Küchler, T. Bauer, M. Brando, F. Steglich, Rev. Sci. Instrum. 83, 095102 (2012). doi: 10.1063/1.4748864
  95. 95.
    P.L. Alireza, G.G. Lonzarich, Rev. Sci. Instrum. 80, 023906 (2009). doi: 10.1063/1.3077303
  96. 96.
    M. Nicklas, (2009). Unpublished.Google Scholar
  97. 97.
    D. Wohlleben, M.B. Maple, Rev. Sci. Instrum. 42, 1573 (1971). doi: 10.1063/1.1684942
  98. 98.
    K. Koyama, S. Hane, K. Kamishima, T. Goto, Rev. Sci. Instrum. 69, 3009 (1998). doi: 10.1063/1.1149048
  99. 99.
    K.V. Kamenev, S. Tancharakorn, A. Robertson, A. Harrison, Rev. Sci. Instrum. 77, 73905 (2006). doi: 10.1063/1.2221537
  100. 100.
    P.L. Alireza, S. Barakat, A.M. Cumberlidge, G. Lonzarich, F. Nakamura, J. Phys. Soc. Jpn. 76SA, 216 (2007). doi: 10.1143/JPSJS.76SA.216
  101. 101.
    C. Pfleiderer, Rev. Sci. Instrum. 68, 1532 (1997). doi: 10.1063/1.1147642
  102. 102.
    P.L. Alireza, S.R. Julian, Rev. Sci. Instrum. 74, 4728 (2003). doi: 10.1063/1.1614861
  103. 103.
    M. Ohashi, G. Oomi, J. Phys. Soc. Jpn. 76SA, 226 (2007). doi: 10.1143/JPSJS.76SA.226
  104. 104.
    Y. Tokiwa, P. Gegenwart, T. Radu, J. Ferstl, G. Sparn, C. Geibel, F. Steglich, Phys. Rev. Lett. 94, 226402 (2005). doi: 10.1103/PhysRevLett.94.226402
  105. 105.
    C.C. Kim, M.E. Reeves, M.S. Osofsky, E.F. Skelton, D.H. Liebenberg, Rev. Sci. Instrum. 65, 992 (1994). doi: 10.1063/1.1144878
  106. 106.
    M. Takashita, H. Aoki, T. Matsumoto, C.J. Haworth, T. Terashima, A. Uesawa, T. Suzuki, Phys. Rev. Lett. 78, 1948 (1997). doi: 10.1103/PhysRevLett.78.1948
  107. 107.
    M.S. Nam, J. Singleton, A.K. Klehe, W. Hayes, M. Kurmoo, P. Day, Synth. Met. 103, 2259 (1999). doi: 10.1016/s0379-6779(98)00444-5
  108. 108.
    H. Shishido, R. Settai, D. Aoki, S. Ikeda, H. Nakawaki, N. Nakamura, T. Iizuka, Y. Inada, K. Sugiyama, T. Takeuchi, K. Kindo, C. Kobayashi, Y. Haga, H. Harima, Y. Aoki, T. Namiki, H. Sato, Y. Ōnuki, Phys. Soc. Jpn. 71, 162 (2002). doi: 10.1143/jpsj.71.162
  109. 109.
    Y. Ōnuki, R. Settai, Low Temp. Phys. 38, 89 (2012). doi: 10.1063/1.3683408
  110. 110.
    S.K. Goh, P.L. Alireza, P.D.A. Mann, A.M. Cumberlidge, C. Bergemann, M. Sutherland, Y. Maeno, Cur. Appl. Phys. 8, 304 (2008). doi: 10.1016/j.cap.2007.10.020
  111. 111.
    K. Kitagawa, H. Gotou, Y. Yagi, A. Yamada, T. Matsumoto, Y. Uwatoko, M. Takigawa, J. Phys. Soc. Jpn. 79, 024001 (2010). doi: 10.1143/jpsj.79.024001
  112. 112.
    J. Haase, S.K. Goh, T. Meissner, P.L. Alireza, D. Rybicki, Rev. Sci. Instrum. 80, 073905 (2009). doi: 10.1063/1.3183504
  113. 113.
    T. Meissner, S.K. Goh, J. Haase, B. Meier, D. Rybicki, P.L. Alireza, J. Low Temp. Phys. 159, 284 (2010). doi: 10.1007/s10909-009-0131-5
  114. 114.
    K. Hirayama, T. Yamazaki, H. Fukazawa, Y. Kohori, N. Takeshita, J. Phys. Soc. Jpn. 77, 075001 (2008). doi: 10.1143/jpsj.77.075001
  115. 115.
    C.P. Poole, Electron spin resonance a comprehensive treatise on experimental techniques (Dover, NY, 1996)Google Scholar
  116. 116.
    J. Sichelschmidt, V.A. Ivanshin, J. Ferstl, C. Geibel, F. Steglich, Phys. Rev. Lett. 91, 156401 (2003). doi: 10.1103/PhysRevLett.91.156401
  117. 117.
    J. Sichelschmidt, J. Wykhoff, T. Gruner, C. Krellner, C. Klingner, C. Geibel, F. Steglich, H.A. Krug von Nidda, D.V. Zakharov, A. Loidl, I. Fazlizhanov, Phys. Rev. B 81, 205116 (2010). doi: 10.1103/PhysRevB.81.205116
  118. 118.
    H. Ohta, T. Sakurai, S. Okubo, M. Saruhashi, T. Kunimoto, Y. Uwatoko, J. Akimitsu, J. Phys.: Condens. Matter 14, 10637 (2002). doi: 10.1088/0953-89844/44/348
  119. 119.
    T. Sakurai, A. Taketani, T. Tomita, S. Okubo, H. Ohta, Y. Uwatoko, Rev. Sci. Instrum. 78, 65107 (2007). doi: 10.1063/1.2746818
  120. 120.
    T. Sakurai, T. Horie, M. Tomoo, K. Kondo, N. Matsumi, S. Okubo, H. Ohta, Y. Uwatoko, K. Kudo, Y. Koike, H. Tanaka, J. Phys.: Conf. Ser. 215, 012184 (2010). doi: 10.1088/1742-6596/215/1/012184
  121. 121.
    A. Amato, Rev. Mod. Phys. 69, 1119 (1997). doi: 10.1103/RevModPhys.69.1119
  122. 122.
    J.E. Sonier, J.H. Brewer, R.F. Kiefl, Rev. Mod. Phys. 72, 769 (2000). doi: 10.1103/RevModPhys.72.769
  123. 123.
    J.E. Sonier, Rep. Prog. Phys. 70, 1717 (2007). doi: 10.1088/0034-4885/70/11/R01
  124. 124.
    D. Andreica, Magnetic phase diagram in some kondo-lattice compounds: microscopic and macroscopic studies. Phd-thesis, ETH Zürich (2001). doi: 10.3929/ethz-a-004171645
  125. 125.
    N. Egetenmeyer, J.L. Gavilano, A. Maisuradze, S. Gerber, D.E. MacLaughlin, G. Seyfarth, D. Andreica, A. Desilets-Benoit, A.D. Bianchi, C. Baines, R. Khasanov, Z. Fisk, M. Kenzelmann, Phys. Rev. Lett. 108, 177204 (2012). doi: 10.1103/PhysRevLett.108.177204
  126. 126.
    S. Klotz, M. Braden, J.M. Besson, Hyperfine Interact. 128, 245 (2000). doi: 10.1023/a:1012691801269
  127. 127.
    D. Bloch, J. Paureau, J. Voiron, G. Parisot, Rev. Sci. Instrum. 47, 296 (1976). doi: 10.1063/1.1134606
  128. 128.
    S.P. Besedin, I.N. Makarenko, S.M. Stishov, V.P. Glazkov, I.N. Goncharenko, V.A. Somenkov, High Press. Res. 14, 193 (1995). doi: 10.1080/08957959508200918
  129. 129.
    S. Klotz, J.M. Besson, G. Hamel, R.J. Nelmes, J.S. Loveday, W.G. Marshall, High Press. Res. 14, 249 (1996). doi: 10.1080/08957959608201409
  130. 130.
    I.N. Goncharenko, High Press. Res. 24, 193 (2004). doi: 10.1080/08957950410001661882
  131. 131.
    C.L. Bull, M. Guthrie, S. Klotz, J. Philippe, T. Strässle, R.J. Nelmes, J.S. Loveday, G. Hamel, High Press. Res. 25, 229 (2005). doi: 10.1080/08957950500452893
  132. 132.
    I.N. Goncharenko, High Press. Res. 27, 187 (2007). doi: 10.1080/08957950601105507
  133. 133.
    J. Paureau, C. Vettier, Rev. Sci. Instrum. 46, 1484 (1975). doi: 10.1063/1.1134083
  134. 134.
    W. Bao, C. Broholm, S.F. Trevino, Rev. Sci. Instrum. 66, 1260 (1995). doi: 10.1063/1.1146019
  135. 135.
    F. Amita, A. Onodera, Rev. Sci. Instrum. 69, 2738 (1998). doi: 10.1063/1.1149008
  136. 136.
    B. Fåk, D.F. McMorrow, P.G. Niklowitz, S. Raymond, E. Ressouche, J. Flouquet, P.C. Canfield, S.L. Budko, Y. Janssen, M.J. Gutmann, J. Phys.: Condens. Matter 17, 301 (2005). doi: 10.1088/0953-89847/2/006
  137. 137.
    W. Wang, D.A. Sokolov, A.D. Huxley, K.V. Kamenev, Rev. Sci. Instrum. 82, 073903 (2011). doi: 10.1063/1.3608112
  138. 138.
    S. Klotz, Techniques in High Pressure Neutron Scattering (CRC Press, Boca Raton, 2012)CrossRefGoogle Scholar
  139. 139.
    M.M. Abd-Elmeguid, Hyperfine Interact. 113, 111 (1998). doi: 10.1023/A:1012615414512
  140. 140.
    S. Medvedev, T.M. McQueen, I.A. Troyan, T. Palasyuk, M.I. Eremets, R.J. Cava, S. Naghavi, F. Casper, V. Ksenofontov, G. Wortmann, C. Felser, Nature Mater. 8, 630 (2009). doi: 10.1038/nmat2491
  141. 141.
    J.S. Schilling, U.F. Klein, W.B. Holzapfel, Rev. Sci. Instrum. 45, 1353 (1974). doi: 10.1063/1.1686499
  142. 142.
    G.R. Hearne, M.P. Pasternak, R.D. Taylor, Hyperfine Interact. 92, 1155 (1994). doi: 10.1007/bf02065748
  143. 143.
    G.R. Hearne, M.P. Pasternak, R.D. Taylor, Rev. Sci. Instrum. 65, 3787 (1994). doi: 10.1063/1.1144508
  144. 144.
    L. Degiorgi, Rev. Mod. Phys. 71, 687 (1999). doi: 10.1103/RevModPhys. 71.687
  145. 145.
    H. Okamura, M. Matsunami, R. Kitamura, S. Ishida, A. Ochiai, T. Nanba, J. Phys.: Conf. Ser. 215, 012051 (2010). doi: 10.1088/1742-6596/215/1/012051
  146. 146.
    L. Degiorgi, New J. Phys. 13, 023011 (2011). doi: 10.1088/1367-2630/13/2/023011
  147. 147.
    A.F. Goncharov, Int. J. Spectr. 2012, 617528 (2012). doi: 10.1155/2012/617528
  148. 148.
    Y. Syuma, M. Keizo, Sci. Technol. Adv. Mater. 10, 024307 (2009). doi: 10.1088/1468-6996/10/2/024307
  149. 149.
    M. Lang, J. Müller, Organic Superconductors Superconductivity (Springer, Berlin, 2008), p. 1155. doi: 10.1007/978-3-540-73253-2-20 Google Scholar
  150. 150.
    G.R. Stewart, Rev. Mod. Phys. 83, 1589 (2011). doi: 10.1103/RevModPhys.83.1589
  151. 151.
    F. Steglich, J. Aarts, C.D. Bredl, W. Lieke, D. Meschede, W. Franz, H. Schäfer, Phys. Rev. Lett. 43, 1892 (1979). doi: 10.1103/PhysRevLett. 43.1892
  152. 152.
    B. Bellarbi, D. Jaccard, A. Benoit, J.M. Mignot, H.F. Braun, Phys. Rev. B 30, 1182 (1984). doi: 10.1103/PhysRevB.30.1182
  153. 153.
    F. Thomas, F. Thomasson, C. Ayache, C. Geibel, F. Steglich, Phys. B 303, 168–188 (1993). doi: 10.1016/0921-4526(93)90561-j
  154. 154.
    F. Thomas, C. Ayache, I.A. Fomine, J. Thomasson, C. Geibel, J. Phys.: Condens. Matter 8, L51 (1996). doi: 10.1088/0953-8984/8/4/002
  155. 155.
    H.Q. Yuan, F.M. Grosche, M. Deppe, C. Geibel, G. Sparn, F. Steglich, Science 302, 2104 (2003). doi: 10.1126/science.1091648
  156. 156.
    D. Jaccard, K. Behnia, J. Sierro, Phys. Lett. A 163, 475 (1992). doi: 10.1016/0375-9601(92)90860-o
  157. 157.
    R. Movshovich, T. Graf, D. Mandrus, J.D. Thompson, J.L. Smith, Z. Fisk, Phys. Rev. B 53, 8241 (1996). doi: 10.1103/PhysRevB.53.8241
  158. 158.
    N.D. Mathur, F.M. Grosche, S.R. Julian, I.R. Walker, D.M. Freye, R.K.W. Haselwimmer, G.G. Lonzarich, Nature 394, 39 (1998). doi: 10.1038/27838
  159. 159.
    F.M. Grosche, S.R. Julian, N.D. Mathur, G.G. Lonzarich, Phys. B 50, 223–224 (1996). doi: 10.1016/0921-4526(96)00036-1
  160. 160.
    J.D. Thompson, N. Nicklas, A. Bianchi, R. Movshovich, A. Llobet, W. Bao, A. Malinowski, M.F. Hundley, N.O. Moreno, P.G. Pagliuso, J.L. Sarrao, S. Nakatsuji, Z. Fisk, R. Borth, E. Lengyel, N. Oeschler, G. Sparn, F. Steglich, Phys. B 446, 329–333 (2003). doi: 10.1016/s0921-4526(02)01987-7
  161. 161.
    A. Llobet, J.S. Gardner, E.G. Moshopoulou, J.M. Mignot, M. Nicklas, W. Bao, N.O. Moreno, P.G. Pagliuso, I.N. Goncharenko, J.L. Sarrao, J.D. Thompson, Phys. Rev. B 69, 24403 (2004). doi: 10.1103/PhysRevB.69.024403
  162. 162.
    M. Nicklas, R. Borth, E. Lengyel, P.G. Pagliuso, J.L. Sarrao, V.A. Sidorov, G. Sparn, F. Steglich, J.D. Thompson, J. Phys.: Condens. Matter 13, L905 (2001). doi: 10.1088/0953-89843/4404
  163. 163.
    T. Muramatsu, N. Tateiwa, T.C. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, H. Shishido, Y. Haga, Y. Ōnuki, J. Phys. Soc. Jpn. 70, 3362 (2001). doi: 10.1143/jpsj.70.3362
  164. 164.
    V.A. Sidorov, M. Nicklas, P.G. Pagliuso, J.L. Sarrao, Y. Bang, A.V. Balatsky, J.D. Thompson, Phys. Rev. Lett. 89, 157004 (2009). doi: 10.1103/PhysRevLett.89.157004
  165. 165.
    H. Hegger, H.G. Moshopoulou, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, Phys. Rev. Lett. 84, 4986 (2000). doi: 10.1103/PhysRevLett.84.4986
  166. 166.
    C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, J. Phys.: Condens. Matter 13, L337 (2001). doi: 10.1088/0953-89843703
  167. 167.
    C. Petrovic, R. Movshovich, M. Jaime, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, J.D. Thompson, Z. Fisk, Europhys. Lett. 53, 354 (2001). doi: 10.1209/epl/i2001-00161-8
  168. 168.
    R. Movshovich, M. Jaime, J.D. Thompson, C. Petrovic, Z. Fisk, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 86, 5152 (2001). doi: 10.1103/PhysRevLett.86.5152
  169. 169.
    L.D. Pham, T. Park, S. Maquilon, J.D. Thompson, Z. Fisk, Phys. Rev. Lett. 97, 056404 (2006). doi: 10.1103/PhysRevLett.97.056404
  170. 170.
    M. Nicklas, O. Stockert, P. Tuson, K. Habicht, K. Kiefer, L.D. Pham, J.D. Thompson, Z. Fisk, F. Steglich, Phys. Rev. B 76, 052401 (2007). doi: 10.1103/PhysRevB.76.052401
  171. 171.
    S. Nair, O. Stockert, U. Witte, M. Nicklas, R. Schedler, K. Kiefer, J.D. Thompson, A.D. Bianchi, Z. Fisk, S. Wirth, F. Steglich, Proc. Natl. Acad. Sci. USA 107, 9537 (2010). doi: 10.1073/pnas.1004958107
  172. 172.
    M. Nicklas, V.A. Sidorov, H.A. Borges, P.G. Pagliuso, J.L. Sarrao, J.D. Thompson, Phys. Rev. B 70, 20505 (2004). doi: 10.1103/PhysRevB.70.020505
  173. 173.
    T. Muramatsu, T.C. Kobayashi, K. Shimizu, K. Amaya, D. Aoki, Y. Haga, Y. Ōnuki, Phys. C 539, 388–389 (2003). doi: 10.1016/s0921-4534(02)02731-4
  174. 174.
    P.G. Pagliuso, C. Petrovic, R. Movshovich, D. Hall, M.F. Hundley, J.L. Sarrao, J.D. Thompson, K. Fisk, Phys. Rev. B 64, 100503 (2001). doi: 10.1103/PhysRevB.64.100503
  175. 175.
    A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91, 187004 (2003). doi: 10.1103/PhysRevLett.91.187004
  176. 176.
    H.A. Radovan, N.A. Fortune, T.P. Murphy, S.T. Hannahs, E.C. Palm, S.W. Tozer, D. Hall, Nature 425, 51 (2003). doi: 10.1038/nature01842
  177. 177.
    P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964). doi: 10.1103/PhysRev.135.A550
  178. 178.
    A.I. Larkin, Y.N. Ovchinnikov, Zh Eksp, Teor. Fiz. 47, 1136 (1964)Google Scholar
  179. 179.
    F. Ronning, C. Capan, E.D. Bauer, J.D. Thompson, J.L. Sarrao, R. Movshovich, Phys. Rev. B 73, 64519 (2006). doi: 10.1103/PhysRevB.73.064519
  180. 180.
    S. Singh, C. Capan, M. Nicklas, M. Rams, A. Gladun, H. Lee, J.F. DiTusa, Z. Fisk, F. Steglich, S. Wirth, Phys. Rev. Lett. 98, 057001 (2007). doi: 10.1103/PhysRevLett.98.057001
  181. 181.
    C.F. Miclea, M. Nicklas, D. Parker, K. Maki, J.L. Sarrao, J.D. Thompson, G. Sparn, F. Steglich, Phys. Rev. Lett. 96, 117001 (2006). doi: 10.1103/PhysRevLett.96.117001
  182. 182.
    M. Nicklas, C.F. Miclea, J.L. Sarrao, J.D. Thompson, G. Sparn, F. Steglich, J. Low Temp. Phys. 146, 669 (2007). doi: 10.1007/s10909-006-9284-7
  183. 183.
    M. Kenzelmann, T. Strässle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A.D. Bianchi, R. Movshovich, E.D. Bauer, J.L. Sarrao, J.D. Thompson, Science 321, 1652 (2008). doi: 10.1126/science.1161818

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Max Planck Institute for Chemical Physics of SolidsNöthnitzer Str. 40Germany

Personalised recommendations