Advertisement

Point Contact Spectroscopy in Strongly Correlated Systems

Chapter
  • 2.1k Downloads
Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 180)

Abstract

The application of Point Contact Spectroscopy to strongly correlated materials is reviewed. Results obtained on MgB\(_2\), high T\(_c\) cuprates, heavy fermions, pnictides and spin-active interfaces are reviewed, with an emphasis on the quantitative determination of the mass enhancement factor. The method of analysis presented is particularly useful when low temperature heat capacity measurements cannot be performed due to very high superconducting critical fields.

Keywords

Coherence Length Heavy Fermion Fermi Velocity Contact Size Conventional Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

I am indebted to Philippe Nozières for many illuminating conversations on boundary conditions with heavy fermions and their application to point contact spectroscopy. I also wish to thank warmly Nimrod Bachar for his careful reading of the manuscript.

References

  1. 1.
    Y. Sharvin, Zh. Eksp. Teor. Fiz. 48, 984 (1965) [Sov. Phys. JETP 21, 655 (1965)]Google Scholar
  2. 2.
    A. Andreev, Zh. Eksp. Teor. Fiz. 46, 1823 (1964) [Sov. Phys. JETP 19, 1228 (1964)]Google Scholar
  3. 3.
    P. de Gennes, D. Saint-James, Phys. Lett. 4(2), 151 (1963). doi: 10.1016/0031-9163(63)90148-3
  4. 4.
    D. Saint-James, J. Phys. Fr. 25(10), 899 (1964). doi: 10.1051/jphys:019640025010089900
  5. 5.
    G. Deutscher, Rev. Mod. Phys. 77, 109 (2005). doi: 10.1103/RevModPhys.77.109
  6. 6.
    J. Pankove, Phys. Lett. 21(4), 406 (1966). doi: 10.1016/0031-9163(66)90506-3
  7. 7.
    A. Zaitsev, Sov. Phys. JETP 51, 111 (1980)Google Scholar
  8. 8.
    G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982). doi: 10.1103/PhysRevB.25.4515
  9. 9.
    I. Giaever, Phys. Rev. Lett. 5, 147 (1960). doi: 10.1103/PhysRevLett.5.147
  10. 10.
    G. Deutscher, P. Nozières, Phys. Rev. B 50, 13557 (1994). doi: 10.1103/PhysRevB.50.13557
  11. 11.
    G. Wexler, Proc. Phys. Soc. 89(4), 927 (1966)Google Scholar
  12. 12.
    Y.G. Naidyuk, I.K. Yanson, J. Phys. Condens. Matter 10(40), 8905 (1998)Google Scholar
  13. 13.
    G.E. Blonder, M. Tinkham, Phys. Rev. B 27, 112 (1983). doi: 10.1103/PhysRevB.27.112
  14. 14.
    B. Almog, S. Hacohen-Gourgy, A. Tsukernik, G. Deutscher, Phys. Rev. B 84, 054514 (2011). doi: 10.1103/PhysRevB.84.054514
  15. 15.
    C. Muller, J. van Ruitenbeek, L. de Jongh, Phys. C Supercond. 191(3–4), 485 (1992). doi: 10.1016/0921-4534(92)90947-B
  16. 16.
    Y.G. Naidyuk, K. Gloos, A.A. Menovsky, J. Phys. Condens. Matter 9(29), 6279 (1997)Google Scholar
  17. 17.
    G. Deutscher, P.G. de Gennes, Proximity Effects in Superconductivity (Dekker, New York, 1969)Google Scholar
  18. 18.
    Y. Tanaka, S. Kashiwaya, Phys. Rev. Lett. 74, 3451 (1995). doi: 10.1103/PhysRevLett.74.3451
  19. 19.
    A. Kohen, G. Leibovitch, G. Deutscher, Phys. Rev. Lett. 90, 207005 (2003). doi: 10.1103/PhysRevLett.90.207005
  20. 20.
    C.R. Hu, Phys. Rev. Lett. 72, 1526 (1994). doi: 10.1103/PhysRevLett.72.1526
  21. 21.
    N. Hass, D. Ilzycer, G. Deutscher, G. Desgardin, I. Monot, M. Weger, J. Supercond. 5(2), 191 (1992). doi: 10.1007/BF00618066
  22. 22.
    J.E. Kloeppel, Point-Contact Spectroscopy Deepens Mystery Of Heavy-Fermion Superconductors.Google Scholar
  23. 23.
    W.L. McMillan, J.M. Rowell, Phys. Rev. Lett. 14, 108 (1965). doi: 10.1103/PhysRevLett.14.108
  24. 24.
    J. Bostock, V. Diadiuk, W.N. Cheung, K.H. Lo, R.M. Rose, M.L.A. Mac Vicar, Phys. Rev. Lett. 36, 603 (1976). doi: 10.1103/PhysRevLett.36.603
  25. 25.
    H.R. Kerchner, D.K. Christen, S.T. Sekula, Phys. Rev. B 24, 1200 (1981). doi: 10.1103/PhysRevB.24.1200
  26. 26.
    D. Daghero, R.S. Gonnelli, Supercond. Sci. Technol. 23(4), 043001 (2010). http://stacks.iop.org/0953-2048/23/i=4/a=043001
  27. 27.
    P. Szabó, P. Samuely, J. Kačmarčík, T. Klein, J. Marcus, D. Fruchart, S. Miraglia, C. Marcenat, A. Jansen, Phys. Rev. Lett. 87(13), 137005 (2001). doi: 10.1103/PhysRevLett.87.137005
  28. 28.
    A. Kohen, G. Deutscher, Phys. Rev. B 64, 060506 (2001). doi: 10.1103/PhysRevB.64.060506
  29. 29.
    F. Giubileo, D. Roditchev, W. Sacks, R. Lamy, D.X. Thanh, J. Klein, S. Miraglia, D. Fruchart, J. Marcus, P. Monod, Phys. Rev. Lett. 87, 177008 (2001). doi: 10.1103/PhysRevLett.87.177008
  30. 30.
    P.B. Allen, R.C. Dynes, Phys. Rev. B 12, 905 (1975). doi: 10.1103/PhysRevB.12.905. http://link.aps.org/doi/10.1103/PhysRevB.12.905
  31. 31.
    E.J. Nicol, J.P. Carbotte, Phys. Rev. B 71, 054501 (2005). doi: 10.1103/PhysRevB.71.054501
  32. 32.
    G. Deutscher, N. Hass, Y. Yagil, A. Revcolevschi, G. Dhalenne, J. Supercond. 7(2), 371 (1994). doi: 10.1007/BF00724571
  33. 33.
    G. Deutscher, Nature 397, 410 (1999). doi: 10.1038/17075
  34. 34.
    J.L. Sarrao, L.A. Morales, J.D. Thompson, B.L. Scott, G.R. Stewart, F. Wastin, J. Rebizant, P. Boulet, E. Colineau, G.H. Lander, Nature 420(6913), 297 (2002). doi: 10.1038/nature01212
  35. 35.
    E.D. Bauer, J.D. Thompson, J.L. Sarrao, L.A. Morales, F. Wastin, J. Rebizant, J.C. Griveau, P. Javorsky, P. Boulet, E. Colineau, G.H. Lander, G.R. Stewart, Phys. Rev. Lett. 93, 147005 (2004). doi: 10.1103/PhysRevLett.93.147005
  36. 36.
    D. Daghero, M. Tortello, G.A. Ummarino, J.C. Griveau, E. Colineau, R. Eloirdi, A.B. Shick, J. Kolorenc, A.I. Lichtenstein, R. Caciuffo, Nat. commun. 3, 786 (2012). doi: 10.1038/ncomms1785
  37. 37.
    A. Nowack, A. Heinz, F. Oster, D. Wohlleben, G. Güntherodt, Z. Fisk, A. Menovsky, Phys. Rev. B 36, 2436 (1987). doi: 10.1103/PhysRevB.36.2436
  38. 38.
    C. Wälti, H.R. Ott, Z. Fisk, J.L. Smith, Phys. Rev. Lett. 84, 5616 (2000). doi: 10.1103/PhysRevLett.84.5616. http://link.aps.org/doi/10.1103/PhysRevLett.84.5616
  39. 39.
    Y. Shimizu, Y. Haga, K. Tenya, T. Yanagisawa, H. Hidaka, H. Amitsuka, J. Phys. Conf. Ser. 391(1), 012065 (2012)Google Scholar
  40. 40.
    G.R. Stewart, Rev. Mod. Phys. 56, 755 (1984). doi: 10.1103/RevModPhys.56.755
  41. 41.
    C. Petrovic, P.G. Pagliuso, M.F. Hundley, R. Movshovich, J.L. Sarrao, J.D. Thompson, Z. Fisk, P. Monthoux, J. Phys. Condens. Matter 13(17), L337 (2001)Google Scholar
  42. 42.
    W.K. Park, L.H. Greene, J.L. Sarrao, J.D. Thompson, Phys. Rev. B 72, 052509 (2005). doi: 10.1103/PhysRevB.72.052509
  43. 43.
    J. Thompson, M. Nicklas, A. Bianchi, R. Movshovich, A. Llobet, W. Bao, A. Malinowski, M. Hundley, N. Moreno, P. Pagliuso, J. Sarrao, S. Nakatsuji, Z. Fisk, R. Borth, E. Lengyel, N. Oeschler, G. Sparn, F. Steglich, Phys. B Condens. Matter 329-333, Part 2(0), 446 (2003). doi: 10.1016/S0921-4526(02)01987-7
  44. 44.
    W.K. Park, L.H. Greene, J.L. Sarrao, J.D. Thompson, Proc. SPIE 5932, 59321Q (2005). doi: 10.1117/12.622251
  45. 45.
    M.P. Allan, F. Massee, D.K. Morr, J. van Dyke, A. Rost, A.P. Mackenzie, C. Petrovic, J.C. Davis, arxiv:1303.4416v1 pp. 1–14 (2013)
  46. 46.
    D. Daghero, M. Tortello, G.A. Ummarino, R.S. Gonnelli, Rep. Prog. Phys. 74(12), 124509 (2011)Google Scholar
  47. 47.
    F. Bergeret, A. Volkov, K. Efetov, Appl. Phys. A 89(3), 599 (2007). doi: 10.1007/s00339-007-4184-5
  48. 48.
    S. Hacohen-Gourgy, B. Almog, G. Deutscher, Phys. Rev. B 84(1), 014532 (2011). doi: 10.1103/PhysRevB.84.014532

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.School of Physics and AstronomyTel Aviv UniversityRamat AvivIsrael

Personalised recommendations