ARPES: A Probe of Electronic Correlations

Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 180)


Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.


Spectral Function Spectral Weight ARPES Data Energy Distribution Curve Quasiparticle Band 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. Damascelli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)ADSGoogle Scholar
  2. 2.
    S. Nakatsuji, Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000)ADSGoogle Scholar
  3. 3.
    J. Kondo, Prog. Theor. Phys. 32(1), 37 (1964)ADSGoogle Scholar
  4. 4.
    Z. Fisk, D.W. Hess, C.J. Pethick, D. Pines, J.L. Smith, J.D. Thompson, J.O. Willis, Science 239(4835), 33 (1988)ADSGoogle Scholar
  5. 5.
    J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)ADSGoogle Scholar
  6. 6.
    E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)ADSGoogle Scholar
  7. 7.
    P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)ADSGoogle Scholar
  8. 8.
    A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)ADSGoogle Scholar
  9. 9.
    M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)ADSGoogle Scholar
  10. 10.
    M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)ADSGoogle Scholar
  11. 11.
    P.A. Grünberg, Rev. Mod. Phys. 80, 1531 (2008)ADSGoogle Scholar
  12. 12.
    N.F. Mott, Proc. Phys. Soc. London A 62, 416 (1949)ADSGoogle Scholar
  13. 13.
    G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984)ADSGoogle Scholar
  14. 14.
    A. Damascelli, Physica Scripta T109, 61 (2004)ADSGoogle Scholar
  15. 15.
    H. Hertz, Ann. Phys. 17, 983 (1887)Google Scholar
  16. 16.
    A. Einstein, Ann. Phys. 31, 132 (1905)Google Scholar
  17. 17.
    R.Z. Bachrach, Synchrotron Radiation Research, Advances in Surface and Interface Science, vol. 1 (Plenum Press, New York, 1992)Google Scholar
  18. 18.
    J. Braun, Rep. Prog. Phys. 59, 1267 (1996)ADSGoogle Scholar
  19. 19.
    C.R. Brundle, A.D. Baker, Electron Spectroscopy: Theory, Techniques, and Applications, vol. 1 (Academic Press, New York, 1977)Google Scholar
  20. 20.
    C.R. Brundle, A.D. Baker, Electron Spectroscopy: Theory, Techniques, and Applications, vol. 2 (Academic Press, New York, 1978)Google Scholar
  21. 21.
    M. Cardona, L. Ley, Photoemission in Solids, vol. 1 (Springer, Berlin, 1978)Google Scholar
  22. 22.
    T.A. Carlson, Photoelectron and Auger Spectroscopy (Plenum Press, New York, 1975)Google Scholar
  23. 23.
    R. Courths, S. Hüfner, Phys. Rep. 112, 53 (1984)ADSGoogle Scholar
  24. 24.
    A. Damascelli, D.H. Lu, Z.X. Shen, J. Electron Spectr. Relat. Phenom. 117–118, 165 (2001)Google Scholar
  25. 25.
    D.E. Eastman, in Techniques of Metal Research, vol. VI, part I, ed. by E. Passaglia (Interscience Publisher, New York, 1972), vol. VI, part I.Google Scholar
  26. 26.
    B. Feuerbacher, R.F. Willis, J. Phys. Solid State Phys. 9, 169 (1976)ADSGoogle Scholar
  27. 27.
    B. Feuerbacher, B. Fitton, R.F. Willis, Photoemission on the Electronic Properties of Surfaces (Wiley, New York, 1978)Google Scholar
  28. 28.
    M. Grioni, J. Electron Spectr. Relat. Phenom. 117–118 (2001). Special issue on Strongly Correlated Systems.Google Scholar
  29. 29.
    F.J. Himpsel, Adv. Phys. 32, 1 (1983)ADSGoogle Scholar
  30. 30.
    S. Hüfner, Photoelectron Spectroscopy (Springer, Berlin, 1995)Google Scholar
  31. 31.
    J.E. Inglesfield, B.W. Holland, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1981)Google Scholar
  32. 32.
    S.D. Kevan, Angle Resolved Photoemission-Theory and Current Applications (Elsevier, Amsterdam, 1992)Google Scholar
  33. 33.
    R.C.G. Leckey, Appl. Surf. Sci. 13, 125 (1982)ADSGoogle Scholar
  34. 34.
    L. Ley, M. Cardona, Photoemission in Solids, vol. II (Springer, Berlin, 1979)Google Scholar
  35. 35.
    I. Lindau, W.E. Spicer, in Synchrotron Radiation Research, ed. by H. Winick, S. Doniach (Plenum Press, New York, 1980)Google Scholar
  36. 36.
    D.W. Lynch, C.G. Olson, Photoemission Studies of High-Temperature Superconductors(Cambridge University Press, Cambridge, 1999)Google Scholar
  37. 37.
    G.D. Mahan, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermans, J. Vennik, W. Dekeyser (Plenum Press, New York, 1978)Google Scholar
  38. 38.
    G. Margaritondo, J.H. Weaver, in Methods of Experimental Physics: Surfaces, ed. by M.G. Legally, R.L. Park (Academic Press, New York, 1983)Google Scholar
  39. 39.
    V.V. Nemoshkalenko, V.G. Aleshin, Electron Spectroscopy of Crystals (Plenum Press, New York, 1979)Google Scholar
  40. 40.
    E.W. Plummer, W. Eberhardt, in Advances in Chemical Physics, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1982)Google Scholar
  41. 41.
    Z.X. Shen, D.S. Dessau, Phys. Rep. 253, 1 (1995)ADSGoogle Scholar
  42. 42.
    N.V. Smith, Crit. Rev. Solid State Sci. 2, 45 (1971)Google Scholar
  43. 43.
    N.V. Smith, F.J. Himpsel, in Handbook on Synchrotron Radiation, ed. by E.E. Koch (North-Holland, Amsterdam, 1983)Google Scholar
  44. 44.
    K.E. Smith, S.D. Kevan, Prog. Solid State Chem. 21, 49 (1991)Google Scholar
  45. 45.
    G. Wendin, Breakdown of the One-Electron Pictures in Photoelectron Spectroscopy (Springer, Berlin, 1981)Google Scholar
  46. 46.
    G. Wertheim, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermans, J. Vennik, W. Dekeyser (Plenum Press, New York, 1978)Google Scholar
  47. 47.
    R.H. Williams, G.P. Srivastava, I.T. McGovern, Rep. Prog. Phys. 43, 1357 (1980)ADSGoogle Scholar
  48. 48.
    M.B.J. Meinders, Ph.D. Thesis, University of Groningen, The Netherlands, 1994Google Scholar
  49. 49.
    G.D. Mahan, Phys. Rev. B 2, 4334 (1970)ADSGoogle Scholar
  50. 50.
    V.N. Strocov, H.I. Starnberg, P.O. Nilsson, H.E. Brauer, L.J. Holleboom, Phys. Rev. Lett. 79, 467 (1997)ADSGoogle Scholar
  51. 51.
    V.N. Strocov, R. Claessen, G. Nicolay, S. Hüfner, A. Kimura, A. Harasawa, S. Shin, A. Kakizaki, P.O. Nilsson, H.I. Starnberg, P. Blaha, Phys. Rev. Lett. 81, 4943 (1998)ADSGoogle Scholar
  52. 52.
    T. Pillo, Ph.D. Thesis, University of Freiburg, Switzerland, 1999Google Scholar
  53. 53.
    N.V. Smith, P. Thiry, Y. Petroff, Phys. Rev. B 47, 15476 (1993)ADSGoogle Scholar
  54. 54.
    T. Miller, W.E. McMahon, T.C. Chiang, Phys. Rev. Lett. 77, 1167 (1996)ADSGoogle Scholar
  55. 55.
    E.D. Hansen, T. Miller, T.C. Chiang, Phys. Rev. B 55, 1871 (1997)ADSGoogle Scholar
  56. 56.
    E.D. Hansen, T. Miller, T.C. Chiang, Phys. Rev. Lett. 78, 2807 (1997)ADSGoogle Scholar
  57. 57.
    K. Mitchell, Proc. Roy. Soc. London A 146, 442 (1934)zbMATHADSGoogle Scholar
  58. 58.
    R.E.B. Makinson, Phys. Rev. 75, 1908 (1949)zbMATHADSGoogle Scholar
  59. 59.
    M.J. Buckingham, Phys. Rev. 80, 704 (1950)ADSGoogle Scholar
  60. 60.
    W.L. Schaich, N.W. Ashcroft, Phys. Rev. B 3, 2452 (1971)ADSGoogle Scholar
  61. 61.
    P.J. Feibelman, D.E. Eastman, Phys. Rev. B 10, 4932 (1974)ADSGoogle Scholar
  62. 62.
    J.B. Pendry, Surf. Sci. 57, 679 (1976)ADSGoogle Scholar
  63. 63.
    J.B. Pendry, J. Phys. Solid State Phys. 8, 2413 (1975)ADSGoogle Scholar
  64. 64.
    A. Liebsch, Phys. Rev. B 13, 544 (1976)ADSGoogle Scholar
  65. 65.
    A. Liebsch, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermans, J. Vennik, W. Dekeyser (Plenum Press, New York, 1978)Google Scholar
  66. 66.
    M. Lindroos, A. Bansil, Phys. Rev. Lett. 75, 1182 (1995)ADSGoogle Scholar
  67. 67.
    M. Lindroos, A. Bansil, Phys. Rev. Lett. 77, 2985 (1996)ADSGoogle Scholar
  68. 68.
    A. Bansil, M. Lindroos, J. Phys. Chem. Solids 56, 1855 (1995)ADSGoogle Scholar
  69. 69.
    A. Bansil, M. Lindroos, J. Phys. Chem. Solids 59, 1879 (1998)ADSGoogle Scholar
  70. 70.
    A. Bansil, M. Lindroos, Phys. Rev. Lett. 83, 5154 (1999)ADSGoogle Scholar
  71. 71.
    H.Y. Fan, Phys. Rev. 68, 43 (1945)ADSGoogle Scholar
  72. 72.
    C.N. Berglund, W.E. Spicer, Phys. Rev. 136, A1030 (1964)ADSGoogle Scholar
  73. 73.
    J. Sakurai, Modern Quantum Mechanics (Pearson Education, New Jersey, 2006)Google Scholar
  74. 74.
    J.W. Gadzuk, M. Šunjić, Phys. Rev. B 12, 524 (1975)ADSGoogle Scholar
  75. 75.
    A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, Oxford, 1965)zbMATHGoogle Scholar
  76. 76.
    L. Hedin, S. Lundqvist, in Solid State Physics: Advances in Research and Applications, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1969)Google Scholar
  77. 77.
    A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)Google Scholar
  78. 78.
    G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1981)Google Scholar
  79. 79.
    E.N. Economou, Green’s Functions in Quantum Physics, Springer Series in Solid State Science, vol. 7 (Springer, Berlin, 1983)Google Scholar
  80. 80.
    G. Rickayzen, Green’s Functions and Condensed Matter in Techniques of Physics, vol, vol. 7 (Academic Press, London, 1991)Google Scholar
  81. 81.
    C.N. Veenstra, G.L. Goodvin, M. Berciu, A. Damascelli, Phys. Rev. B 82, 012504 (2010)ADSGoogle Scholar
  82. 82.
    C.N. Veenstra, G.L. Goodvin, M. Berciu, A. Damascelli, Phys. Rev. B 84, 085126 (2011)ADSGoogle Scholar
  83. 83.
    L.D. Landau, Sov. Phys. JETP 3, 920 (1956)Google Scholar
  84. 84.
    L.D. Landau, Sov. Phys. JETP 5, 101 (1957)zbMATHGoogle Scholar
  85. 85.
    L.D. Landau, Sov. Phys. JETP 8, 70 (1959)Google Scholar
  86. 86.
    D. Pines, P. Noziéres, The Theory of Quantum Liquids (Benjamin, New York, 1966)Google Scholar
  87. 87.
    J.M. Luttinger, Phys. Rev. 121, 942 (1961)MathSciNetzbMATHADSGoogle Scholar
  88. 88.
    C. Hodges, H. Smith, J.W. Wilkins, Phys. Rev. B 4, 302 (1971)ADSGoogle Scholar
  89. 89.
    P. Nozières, Theory of Interacting Fermi Systems (Benjamin, New York, 1964)zbMATHGoogle Scholar
  90. 90.
    A. Damascelli, D. Lu, Z. Shen, J. Electron Spectr. Relat. Phenom. 117–118, 165 (2001)Google Scholar
  91. 91.
    F. Ronning, C. Kim, D.L. Feng, D.S. Marshall, A.G. Loeser, L.L. Miller, J.N. Eckstein, L. Bozovic, Z.X. Shen, Science 282, 2067 (1998)ADSGoogle Scholar
  92. 92.
    F. Ronning, C. Kim, K.M. Shen, N.P. Armitage, A. Damascelli, D.H. Lu, D.L. Feng, Z.X. Shen, L.L. Miller, Y.J. Kim, F. Chou, I. Terasaki, Phys. Rev. B 67, 035113 (2003)ADSGoogle Scholar
  93. 93.
    D.A. Shirley, Phys. Rev. B 5, 4709 (1972)ADSGoogle Scholar
  94. 94.
    G.W. Gobeli, F.G. Allen, E.O. Kane, Phys. Rev. Lett. 12, 94 (1964)ADSGoogle Scholar
  95. 95.
    E. Dietz, H. Becker, U. Gerhardt, Phys. Rev. Lett. 36, 1397 (1976)ADSGoogle Scholar
  96. 96.
    J. Hermanson, Solid State Commun. 22, 9 (1977)ADSGoogle Scholar
  97. 97.
    W. Eberhardt, F.J. Himpsel, Phys. Rev. B 21, 5572 (1980)ADSGoogle Scholar
  98. 98.
    J.W. Cooper, Phys. Rev. 128, 681 (1962)ADSGoogle Scholar
  99. 99.
    S.L. Molodtsov, S.V. Halilov, V.D.P. Servedio, W. Schneider, S. Danzenbächer, J.J. Hinarejos, M. Richter, C. Laubschat, Phys. Rev. Lett. 85, 4184 (2000)ADSGoogle Scholar
  100. 100.
    C. Veenstra, Z.H. Zhu, B. Ludbrook, M. Capsoni, G. Levy, A. Nicolaou, J.A. Rosen, R. Comin, S. Kittaka, Y. Maeno, I.S. Elfimov, A. Damascelli, Phys. Rev. Lett. 110, 097004 (2013)ADSGoogle Scholar
  101. 101.
    A. Damascelli, D.H. Lu, K.M. Shen, N.P. Armitage, F. Ronning, D.L. Feng, C. Kim, Z.X. Shen, T. Kimura, Y. Tokura, Z.Q. Mao, Y. Maeno, Phys. Rev. Lett. 85, 5194 (2000)ADSGoogle Scholar
  102. 102.
    T. Kiss, F. Kanetaka, T. Yokoya, T. Shimojima, K. Kanai, S. Shin, Y. Onuki, T. Togashi, C. Zhang, C.T. Chen, S. Watanabe, Phys. Rev. Lett. 94, 057001 (2005)ADSGoogle Scholar
  103. 103.
    J.D. Koralek, J.F. Douglas, N.C. Plumb, Z. Sun, A.V. Fedorov, M.M. Murnane, H.C. Kapteyn, S.T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, D.S. Dessau, Phys. Rev. Lett. 96, 017005 (2006)ADSGoogle Scholar
  104. 104.
    L. Åsbrink, Chem. Phys. Lett. 7, 549 (1970)ADSGoogle Scholar
  105. 105.
    G.A. Sawatzky, Nature 342, 480 (1989)ADSGoogle Scholar
  106. 106.
    K.M. Shen, F. Ronning, D.H. Lu, W.S. Lee, N.J.C. Ingle, W. Meevasana, F. Baumberger, A. Damascelli, N.P. Armitage, L.L. Miller, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.X. Shen, Phys. Rev. Lett. 93, 267002 (2004)ADSGoogle Scholar
  107. 107.
    S. Doniach, M. Sunjic, J. Phys. C: Solid State Phys. 3, 285 (1970)ADSGoogle Scholar
  108. 108.
    F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)ADSGoogle Scholar
  109. 109.
    B.O. Wells, Z.X. Shen, A. Matsuura, D.M. King, M.A. Kastner, M. Greven, R.J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995)ADSGoogle Scholar
  110. 110.
    V.B. Zabolotnyy, S.V. Borisenko, A.A. Kordyuk, J. Geck, D.S. Inosov, A. Koitzsch, J. Fink, M. Knupfer, B. Büchner, S.L. Drechsler, H. Berger, A. Erb, M. Lambacher, L. Patthey, V. Hinkov, B. Keimer, Phys. Rev. B 76, 064519 (2007)ADSGoogle Scholar
  111. 111.
    M.A. Hossain, J.D.F. Mottershead, D. Fournier, A. Bostwick, J.L. McChesney, E. Rotenberg, R. Liang, W.N. Hardy, G.A. Sawatzky, I.S. Elfimov, D.A. Bonn, A. Damascelli, Nat. Phys. 4, 527 (2008)Google Scholar
  112. 112.
    D. Fournier, G. Levy, Y. Pennec, J.L. McChesney, A. Bostwick, E. Rothenberg, R. Liang, W.N. Hardy, D.A. Bonn, I. Elfimov, A. Damascelli, Nat. Phys. 6, 905 (2010)Google Scholar
  113. 113.
    N. Mannella, W.L. Yang, X.J. Zhoe, H. Zheng, J.F. Mitchell, J. Zaanen, T.P. Devereaux, N. Nagaosa, Z. Hussain, Z.-X. Shen, Nature 438, 474 (2005)ADSGoogle Scholar
  114. 114.
    Y.D. Chuang, A.D. Gromko, D.S. Dessau, T. Kimura, Y. Tokura, Science 292, 1509 (2001)ADSGoogle Scholar
  115. 115.
    Z. Sun, Y.D. Chuang, A.V. Fedorov, J.F. Douglas, D. Reznik, F. Weber, N. Aliouane, D.N. Argyriou, H. Zheng, J.F. Mitchell, T. Kimura, Y. Tokura, A. Revcolevschi, D.S. Dessau, Phys. Rev. Lett. 97, 056401 (2006)ADSGoogle Scholar
  116. 116.
    Z. Sun, J.F. Douglas, A.V. Fedorov, Y.D. Chuang, H. Zheng, J.F. Mitchell, D.S. Dessau, Nat. Phys. 3, 248 (2007)Google Scholar
  117. 117.
    S. de Jong, Y. Huang, I. Santoso, F. Massee, R. Follath, O. Schwarzkopf, L. Patthey, M. Shi, M.S. Golden, Phys. Rev. B 76, 235117 (2007)ADSGoogle Scholar
  118. 118.
    S. de Jong, F. Massee, Y. Huang, M. Gorgoi, F. Schaefers, J. Fink, A.T. Boothroyd, D. Prabhakaran, J.B. Goedkoop, M.S. Golden, Phys. Rev. B 80, 205108 (2009)ADSGoogle Scholar
  119. 119.
    F. Massee, S. de Jong, Y. Huang, W.K. Siu, I. Santoso, A. Mans, A.T. Boothroyd, D. Prabhakaran, R. Follath, A. Varykhalov, L. Patthey, M. Shi, J.B. Goedkoop, M.S. Golden, Nat. Phys. 7, 978 (2011)Google Scholar
  120. 120.
    Z. Yusof, B.O. Wells, T. Valla, P.D. Johnson, A.V. Fedorov, Q. Li, S.M. Loureiro, R.J. Cava, Phys. Rev. B 76, 165115 (2007)ADSGoogle Scholar
  121. 121.
    A. Nicolaou, V. Brouet, M. Zacchigna, I. Vobornik, A. Tejeda, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, S. Hébert, H. Muguerra, D. Grebille, Phys. Rev. Lett. 104, 056403 (2010)ADSGoogle Scholar
  122. 122.
    V. Brouet, A. Nicolaou, Publication in progressGoogle Scholar
  123. 123.
    M.W. Haverkort, I.S. Elfimov, L.H. Tjeng, G.A. Sawatzky, A. Damascelli, Phys. Rev. Lett. 101, 026406 (2008)ADSGoogle Scholar
  124. 124.
    F. Baumberger, N.J.C. Ingle, W. Meevasana, K.M. Shen, D.H. Lu, R.S. Perry, A.P. Mackenzie, Z. Hussain, D.J. Singh, Z.X. Shen, Phys. Rev. Lett. 96, 246402 (2006)ADSGoogle Scholar
  125. 125.
    B.J. Kim, J. Yu, H. Koh, I. Nagai, S.I. Ikeda, S.J. Oh, C. Kim, Phys. Rev. Lett. 97, 106401 (2006)ADSGoogle Scholar
  126. 126.
    A. Earnshaw, B.N. Figgis, J. Lewis, R.D. Peacock, J. Chem. Soc. pp. 3132–3138 (1961) Please provide volume number for [126].Google Scholar
  127. 127.
    M. Platé, J.D.F. Mottershead, I.S. Elfimov, D.C. Peets, R. Liang, D.A. Bonn, W.N. Hardy, S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)ADSGoogle Scholar
  128. 128.
    G. Cao, J. Bolivar, S. McCall, J.E. Crow, R.P. Guertin, Phys. Rev. B 57, R11039 (1998)ADSGoogle Scholar
  129. 129.
    B.J. Kim, H. Jin, S.J. Moon, J.Y. Kim, B.G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008)ADSGoogle Scholar
  130. 130.
    R. Arita, J. Kuneš, A.V. Kozhevnikov, A.G. Eguiluz, M. Imada, Phys. Rev. Lett. 108, 086403 (2012)ADSGoogle Scholar
  131. 131.
    D. Hsieh, F. Mahmood, D.H. Torchinsky, G. Cao, N. Gedik, Phys. Rev. B 86, 035128 (2012)ADSGoogle Scholar
  132. 132.
    R. Comin, G. Levy, B. Ludbrook, Z.H. Zhu, C.N. Veenstra, J.A. Rosen, Y. Singh, P. Gegenwart, D. Stricker, J.N. Hancock, D. van der Marel, I.S. Elfimov, A. Damascelli, Phys. Rev. Lett. 109, 266406 (2012)ADSGoogle Scholar
  133. 133.
    A. Shitade, H. Katsura, J. Kuneš, X.L. Qi, S.C. Zhang, N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009)ADSGoogle Scholar
  134. 134.
    H. Jin, H. Kim, H. Jeong, C.H. Kim, J. Yu, arXiv:0907.0743v1 2009
  135. 135.
    J. Chaloupka, G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)ADSGoogle Scholar
  136. 136.
    Y. Singh, P. Gegenwart, Phys. Rev. B 82, 064412 (2010)ADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of British ColumbiaVancouverCanada

Personalised recommendations