Skip to main content

ARPES: A Probe of Electronic Correlations

  • Chapter
  • First Online:
Strongly Correlated Systems

Part of the book series: Springer Series in Solid-State Sciences ((SSSOL,volume 180))

  • 3349 Accesses

Abstract

Angle-resolved photoemission spectroscopy (ARPES) is one of the most direct methods of studying the electronic structure of solids. By measuring the kinetic energy and angular distribution of the electrons photoemitted from a sample illuminated with sufficiently high-energy radiation, one can gain information on both the energy and momentum of the electrons propagating inside a material. This is of vital importance in elucidating the connection between electronic, magnetic, and chemical structure of solids, in particular for those complex systems which cannot be appropriately described within the independent-particle picture. Among the various classes of complex systems, of great interest are the transition metal oxides, which have been at the center stage in condensed matter physics for the last four decades. Following a general introduction to the topic, we will lay the theoretical basis needed to understand the pivotal role of ARPES in the study of such systems. After a brief overview on the state-of-the-art capabilities of the technique, we will review some of the most interesting and relevant case studies of the novel physics revealed by ARPES in 3d-, 4d- and 5d-based oxides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In particular, this implies that the wavefunction for the (N\(-\)1)-electron system at time \( {t}_{1} \) (when the interaction \( {H}_{int} \) is switched on) remains unchanged when \( {H}_{int} \) is switched off at \( {t}_{2} \), thus allowing to use Fermi’s golden rule and the instantaneous transition probabilities \({w}_{fi}\). This approximation is only valid when \( {t}_{2} - {t}_{1} \ll \frac{\hbar }{\varDelta E} \), \( {\varDelta E} \) being the characteristic energy separation of the (N\(-\)1) system [73].

References

  1. A. Damascelli, Z. Hussain, Z.X. Shen, Rev. Mod. Phys. 75, 473 (2003)

    ADS  Google Scholar 

  2. S. Nakatsuji, Y. Maeno, Phys. Rev. Lett. 84, 2666 (2000)

    ADS  Google Scholar 

  3. J. Kondo, Prog. Theor. Phys. 32(1), 37 (1964)

    ADS  Google Scholar 

  4. Z. Fisk, D.W. Hess, C.J. Pethick, D. Pines, J.L. Smith, J.D. Thompson, J.O. Willis, Science 239(4835), 33 (1988)

    ADS  Google Scholar 

  5. J. Zaanen, G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 55, 418 (1985)

    ADS  Google Scholar 

  6. E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    ADS  Google Scholar 

  7. P.A. Lee, N. Nagaosa, X.G. Wen, Rev. Mod. Phys. 78, 17 (2006)

    ADS  Google Scholar 

  8. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)

    ADS  Google Scholar 

  9. M. Imada, A. Fujimori, Y. Tokura, Rev. Mod. Phys. 70, 1039 (1998)

    ADS  Google Scholar 

  10. M.B. Salamon, M. Jaime, Rev. Mod. Phys. 73, 583 (2001)

    ADS  Google Scholar 

  11. P.A. Grünberg, Rev. Mod. Phys. 80, 1531 (2008)

    ADS  Google Scholar 

  12. N.F. Mott, Proc. Phys. Soc. London A 62, 416 (1949)

    ADS  Google Scholar 

  13. G.A. Sawatzky, J.W. Allen, Phys. Rev. Lett. 53, 2339 (1984)

    ADS  Google Scholar 

  14. A. Damascelli, Physica Scripta T109, 61 (2004)

    ADS  Google Scholar 

  15. H. Hertz, Ann. Phys. 17, 983 (1887)

    Google Scholar 

  16. A. Einstein, Ann. Phys. 31, 132 (1905)

    Google Scholar 

  17. R.Z. Bachrach, Synchrotron Radiation Research, Advances in Surface and Interface Science, vol. 1 (Plenum Press, New York, 1992)

    Google Scholar 

  18. J. Braun, Rep. Prog. Phys. 59, 1267 (1996)

    ADS  Google Scholar 

  19. C.R. Brundle, A.D. Baker, Electron Spectroscopy: Theory, Techniques, and Applications, vol. 1 (Academic Press, New York, 1977)

    Google Scholar 

  20. C.R. Brundle, A.D. Baker, Electron Spectroscopy: Theory, Techniques, and Applications, vol. 2 (Academic Press, New York, 1978)

    Google Scholar 

  21. M. Cardona, L. Ley, Photoemission in Solids, vol. 1 (Springer, Berlin, 1978)

    Google Scholar 

  22. T.A. Carlson, Photoelectron and Auger Spectroscopy (Plenum Press, New York, 1975)

    Google Scholar 

  23. R. Courths, S. Hüfner, Phys. Rep. 112, 53 (1984)

    ADS  Google Scholar 

  24. A. Damascelli, D.H. Lu, Z.X. Shen, J. Electron Spectr. Relat. Phenom. 117–118, 165 (2001)

    Google Scholar 

  25. D.E. Eastman, in Techniques of Metal Research, vol. VI, part I, ed. by E. Passaglia (Interscience Publisher, New York, 1972), vol. VI, part I.

    Google Scholar 

  26. B. Feuerbacher, R.F. Willis, J. Phys. Solid State Phys. 9, 169 (1976)

    ADS  Google Scholar 

  27. B. Feuerbacher, B. Fitton, R.F. Willis, Photoemission on the Electronic Properties of Surfaces (Wiley, New York, 1978)

    Google Scholar 

  28. M. Grioni, J. Electron Spectr. Relat. Phenom. 117–118 (2001). Special issue on Strongly Correlated Systems.

    Google Scholar 

  29. F.J. Himpsel, Adv. Phys. 32, 1 (1983)

    ADS  Google Scholar 

  30. S. Hüfner, Photoelectron Spectroscopy (Springer, Berlin, 1995)

    Google Scholar 

  31. J.E. Inglesfield, B.W. Holland, in The Chemical Physics of Solid Surfaces and Heterogeneous Catalysis, ed. by D.A. King, D.P. Woodruff (Elsevier, Amsterdam, 1981)

    Google Scholar 

  32. S.D. Kevan, Angle Resolved Photoemission-Theory and Current Applications (Elsevier, Amsterdam, 1992)

    Google Scholar 

  33. R.C.G. Leckey, Appl. Surf. Sci. 13, 125 (1982)

    ADS  Google Scholar 

  34. L. Ley, M. Cardona, Photoemission in Solids, vol. II (Springer, Berlin, 1979)

    Google Scholar 

  35. I. Lindau, W.E. Spicer, in Synchrotron Radiation Research, ed. by H. Winick, S. Doniach (Plenum Press, New York, 1980)

    Google Scholar 

  36. D.W. Lynch, C.G. Olson, Photoemission Studies of High-Temperature Superconductors(Cambridge University Press, Cambridge, 1999)

    Google Scholar 

  37. G.D. Mahan, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermans, J. Vennik, W. Dekeyser (Plenum Press, New York, 1978)

    Google Scholar 

  38. G. Margaritondo, J.H. Weaver, in Methods of Experimental Physics: Surfaces, ed. by M.G. Legally, R.L. Park (Academic Press, New York, 1983)

    Google Scholar 

  39. V.V. Nemoshkalenko, V.G. Aleshin, Electron Spectroscopy of Crystals (Plenum Press, New York, 1979)

    Google Scholar 

  40. E.W. Plummer, W. Eberhardt, in Advances in Chemical Physics, ed. by I. Prigogine, S.A. Rice (Wiley, New York, 1982)

    Google Scholar 

  41. Z.X. Shen, D.S. Dessau, Phys. Rep. 253, 1 (1995)

    ADS  Google Scholar 

  42. N.V. Smith, Crit. Rev. Solid State Sci. 2, 45 (1971)

    Google Scholar 

  43. N.V. Smith, F.J. Himpsel, in Handbook on Synchrotron Radiation, ed. by E.E. Koch (North-Holland, Amsterdam, 1983)

    Google Scholar 

  44. K.E. Smith, S.D. Kevan, Prog. Solid State Chem. 21, 49 (1991)

    Google Scholar 

  45. G. Wendin, Breakdown of the One-Electron Pictures in Photoelectron Spectroscopy (Springer, Berlin, 1981)

    Google Scholar 

  46. G. Wertheim, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermans, J. Vennik, W. Dekeyser (Plenum Press, New York, 1978)

    Google Scholar 

  47. R.H. Williams, G.P. Srivastava, I.T. McGovern, Rep. Prog. Phys. 43, 1357 (1980)

    ADS  Google Scholar 

  48. M.B.J. Meinders, Ph.D. Thesis, University of Groningen, The Netherlands, 1994

    Google Scholar 

  49. G.D. Mahan, Phys. Rev. B 2, 4334 (1970)

    ADS  Google Scholar 

  50. V.N. Strocov, H.I. Starnberg, P.O. Nilsson, H.E. Brauer, L.J. Holleboom, Phys. Rev. Lett. 79, 467 (1997)

    ADS  Google Scholar 

  51. V.N. Strocov, R. Claessen, G. Nicolay, S. Hüfner, A. Kimura, A. Harasawa, S. Shin, A. Kakizaki, P.O. Nilsson, H.I. Starnberg, P. Blaha, Phys. Rev. Lett. 81, 4943 (1998)

    ADS  Google Scholar 

  52. T. Pillo, Ph.D. Thesis, University of Freiburg, Switzerland, 1999

    Google Scholar 

  53. N.V. Smith, P. Thiry, Y. Petroff, Phys. Rev. B 47, 15476 (1993)

    ADS  Google Scholar 

  54. T. Miller, W.E. McMahon, T.C. Chiang, Phys. Rev. Lett. 77, 1167 (1996)

    ADS  Google Scholar 

  55. E.D. Hansen, T. Miller, T.C. Chiang, Phys. Rev. B 55, 1871 (1997)

    ADS  Google Scholar 

  56. E.D. Hansen, T. Miller, T.C. Chiang, Phys. Rev. Lett. 78, 2807 (1997)

    ADS  Google Scholar 

  57. K. Mitchell, Proc. Roy. Soc. London A 146, 442 (1934)

    MATH  ADS  Google Scholar 

  58. R.E.B. Makinson, Phys. Rev. 75, 1908 (1949)

    MATH  ADS  Google Scholar 

  59. M.J. Buckingham, Phys. Rev. 80, 704 (1950)

    ADS  Google Scholar 

  60. W.L. Schaich, N.W. Ashcroft, Phys. Rev. B 3, 2452 (1971)

    ADS  Google Scholar 

  61. P.J. Feibelman, D.E. Eastman, Phys. Rev. B 10, 4932 (1974)

    ADS  Google Scholar 

  62. J.B. Pendry, Surf. Sci. 57, 679 (1976)

    ADS  Google Scholar 

  63. J.B. Pendry, J. Phys. Solid State Phys. 8, 2413 (1975)

    ADS  Google Scholar 

  64. A. Liebsch, Phys. Rev. B 13, 544 (1976)

    ADS  Google Scholar 

  65. A. Liebsch, in Electron and Ion Spectroscopy of Solids, ed. by L. Fiermans, J. Vennik, W. Dekeyser (Plenum Press, New York, 1978)

    Google Scholar 

  66. M. Lindroos, A. Bansil, Phys. Rev. Lett. 75, 1182 (1995)

    ADS  Google Scholar 

  67. M. Lindroos, A. Bansil, Phys. Rev. Lett. 77, 2985 (1996)

    ADS  Google Scholar 

  68. A. Bansil, M. Lindroos, J. Phys. Chem. Solids 56, 1855 (1995)

    ADS  Google Scholar 

  69. A. Bansil, M. Lindroos, J. Phys. Chem. Solids 59, 1879 (1998)

    ADS  Google Scholar 

  70. A. Bansil, M. Lindroos, Phys. Rev. Lett. 83, 5154 (1999)

    ADS  Google Scholar 

  71. H.Y. Fan, Phys. Rev. 68, 43 (1945)

    ADS  Google Scholar 

  72. C.N. Berglund, W.E. Spicer, Phys. Rev. 136, A1030 (1964)

    ADS  Google Scholar 

  73. J. Sakurai, Modern Quantum Mechanics (Pearson Education, New Jersey, 2006)

    Google Scholar 

  74. J.W. Gadzuk, M. Šunjić, Phys. Rev. B 12, 524 (1975)

    ADS  Google Scholar 

  75. A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Pergamon Press, Oxford, 1965)

    MATH  Google Scholar 

  76. L. Hedin, S. Lundqvist, in Solid State Physics: Advances in Research and Applications, ed. by H. Ehrenreich, F. Seitz, D. Turnbull (Academic Press, New York, 1969)

    Google Scholar 

  77. A.L. Fetter, J.D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971)

    Google Scholar 

  78. G.D. Mahan, Many-Particle Physics (Plenum Press, New York, 1981)

    Google Scholar 

  79. E.N. Economou, Green’s Functions in Quantum Physics, Springer Series in Solid State Science, vol. 7 (Springer, Berlin, 1983)

    Google Scholar 

  80. G. Rickayzen, Green’s Functions and Condensed Matter in Techniques of Physics, vol, vol. 7 (Academic Press, London, 1991)

    Google Scholar 

  81. C.N. Veenstra, G.L. Goodvin, M. Berciu, A. Damascelli, Phys. Rev. B 82, 012504 (2010)

    ADS  Google Scholar 

  82. C.N. Veenstra, G.L. Goodvin, M. Berciu, A. Damascelli, Phys. Rev. B 84, 085126 (2011)

    ADS  Google Scholar 

  83. L.D. Landau, Sov. Phys. JETP 3, 920 (1956)

    Google Scholar 

  84. L.D. Landau, Sov. Phys. JETP 5, 101 (1957)

    MATH  Google Scholar 

  85. L.D. Landau, Sov. Phys. JETP 8, 70 (1959)

    Google Scholar 

  86. D. Pines, P. Noziéres, The Theory of Quantum Liquids (Benjamin, New York, 1966)

    Google Scholar 

  87. J.M. Luttinger, Phys. Rev. 121, 942 (1961)

    MathSciNet  MATH  ADS  Google Scholar 

  88. C. Hodges, H. Smith, J.W. Wilkins, Phys. Rev. B 4, 302 (1971)

    ADS  Google Scholar 

  89. P. Nozières, Theory of Interacting Fermi Systems (Benjamin, New York, 1964)

    MATH  Google Scholar 

  90. A. Damascelli, D. Lu, Z. Shen, J. Electron Spectr. Relat. Phenom. 117–118, 165 (2001)

    Google Scholar 

  91. F. Ronning, C. Kim, D.L. Feng, D.S. Marshall, A.G. Loeser, L.L. Miller, J.N. Eckstein, L. Bozovic, Z.X. Shen, Science 282, 2067 (1998)

    ADS  Google Scholar 

  92. F. Ronning, C. Kim, K.M. Shen, N.P. Armitage, A. Damascelli, D.H. Lu, D.L. Feng, Z.X. Shen, L.L. Miller, Y.J. Kim, F. Chou, I. Terasaki, Phys. Rev. B 67, 035113 (2003)

    ADS  Google Scholar 

  93. D.A. Shirley, Phys. Rev. B 5, 4709 (1972)

    ADS  Google Scholar 

  94. G.W. Gobeli, F.G. Allen, E.O. Kane, Phys. Rev. Lett. 12, 94 (1964)

    ADS  Google Scholar 

  95. E. Dietz, H. Becker, U. Gerhardt, Phys. Rev. Lett. 36, 1397 (1976)

    ADS  Google Scholar 

  96. J. Hermanson, Solid State Commun. 22, 9 (1977)

    ADS  Google Scholar 

  97. W. Eberhardt, F.J. Himpsel, Phys. Rev. B 21, 5572 (1980)

    ADS  Google Scholar 

  98. J.W. Cooper, Phys. Rev. 128, 681 (1962)

    ADS  Google Scholar 

  99. S.L. Molodtsov, S.V. Halilov, V.D.P. Servedio, W. Schneider, S. Danzenbächer, J.J. Hinarejos, M. Richter, C. Laubschat, Phys. Rev. Lett. 85, 4184 (2000)

    ADS  Google Scholar 

  100. C. Veenstra, Z.H. Zhu, B. Ludbrook, M. Capsoni, G. Levy, A. Nicolaou, J.A. Rosen, R. Comin, S. Kittaka, Y. Maeno, I.S. Elfimov, A. Damascelli, Phys. Rev. Lett. 110, 097004 (2013)

    ADS  Google Scholar 

  101. A. Damascelli, D.H. Lu, K.M. Shen, N.P. Armitage, F. Ronning, D.L. Feng, C. Kim, Z.X. Shen, T. Kimura, Y. Tokura, Z.Q. Mao, Y. Maeno, Phys. Rev. Lett. 85, 5194 (2000)

    ADS  Google Scholar 

  102. T. Kiss, F. Kanetaka, T. Yokoya, T. Shimojima, K. Kanai, S. Shin, Y. Onuki, T. Togashi, C. Zhang, C.T. Chen, S. Watanabe, Phys. Rev. Lett. 94, 057001 (2005)

    ADS  Google Scholar 

  103. J.D. Koralek, J.F. Douglas, N.C. Plumb, Z. Sun, A.V. Fedorov, M.M. Murnane, H.C. Kapteyn, S.T. Cundiff, Y. Aiura, K. Oka, H. Eisaki, D.S. Dessau, Phys. Rev. Lett. 96, 017005 (2006)

    ADS  Google Scholar 

  104. L. Ã…sbrink, Chem. Phys. Lett. 7, 549 (1970)

    ADS  Google Scholar 

  105. G.A. Sawatzky, Nature 342, 480 (1989)

    ADS  Google Scholar 

  106. K.M. Shen, F. Ronning, D.H. Lu, W.S. Lee, N.J.C. Ingle, W. Meevasana, F. Baumberger, A. Damascelli, N.P. Armitage, L.L. Miller, Y. Kohsaka, M. Azuma, M. Takano, H. Takagi, Z.X. Shen, Phys. Rev. Lett. 93, 267002 (2004)

    ADS  Google Scholar 

  107. S. Doniach, M. Sunjic, J. Phys. C: Solid State Phys. 3, 285 (1970)

    ADS  Google Scholar 

  108. F.C. Zhang, T.M. Rice, Phys. Rev. B 37, 3759 (1988)

    ADS  Google Scholar 

  109. B.O. Wells, Z.X. Shen, A. Matsuura, D.M. King, M.A. Kastner, M. Greven, R.J. Birgeneau, Phys. Rev. Lett. 74, 964 (1995)

    ADS  Google Scholar 

  110. V.B. Zabolotnyy, S.V. Borisenko, A.A. Kordyuk, J. Geck, D.S. Inosov, A. Koitzsch, J. Fink, M. Knupfer, B. Büchner, S.L. Drechsler, H. Berger, A. Erb, M. Lambacher, L. Patthey, V. Hinkov, B. Keimer, Phys. Rev. B 76, 064519 (2007)

    ADS  Google Scholar 

  111. M.A. Hossain, J.D.F. Mottershead, D. Fournier, A. Bostwick, J.L. McChesney, E. Rotenberg, R. Liang, W.N. Hardy, G.A. Sawatzky, I.S. Elfimov, D.A. Bonn, A. Damascelli, Nat. Phys. 4, 527 (2008)

    Google Scholar 

  112. D. Fournier, G. Levy, Y. Pennec, J.L. McChesney, A. Bostwick, E. Rothenberg, R. Liang, W.N. Hardy, D.A. Bonn, I. Elfimov, A. Damascelli, Nat. Phys. 6, 905 (2010)

    Google Scholar 

  113. N. Mannella, W.L. Yang, X.J. Zhoe, H. Zheng, J.F. Mitchell, J. Zaanen, T.P. Devereaux, N. Nagaosa, Z. Hussain, Z.-X. Shen, Nature 438, 474 (2005)

    ADS  Google Scholar 

  114. Y.D. Chuang, A.D. Gromko, D.S. Dessau, T. Kimura, Y. Tokura, Science 292, 1509 (2001)

    ADS  Google Scholar 

  115. Z. Sun, Y.D. Chuang, A.V. Fedorov, J.F. Douglas, D. Reznik, F. Weber, N. Aliouane, D.N. Argyriou, H. Zheng, J.F. Mitchell, T. Kimura, Y. Tokura, A. Revcolevschi, D.S. Dessau, Phys. Rev. Lett. 97, 056401 (2006)

    ADS  Google Scholar 

  116. Z. Sun, J.F. Douglas, A.V. Fedorov, Y.D. Chuang, H. Zheng, J.F. Mitchell, D.S. Dessau, Nat. Phys. 3, 248 (2007)

    Google Scholar 

  117. S. de Jong, Y. Huang, I. Santoso, F. Massee, R. Follath, O. Schwarzkopf, L. Patthey, M. Shi, M.S. Golden, Phys. Rev. B 76, 235117 (2007)

    ADS  Google Scholar 

  118. S. de Jong, F. Massee, Y. Huang, M. Gorgoi, F. Schaefers, J. Fink, A.T. Boothroyd, D. Prabhakaran, J.B. Goedkoop, M.S. Golden, Phys. Rev. B 80, 205108 (2009)

    ADS  Google Scholar 

  119. F. Massee, S. de Jong, Y. Huang, W.K. Siu, I. Santoso, A. Mans, A.T. Boothroyd, D. Prabhakaran, R. Follath, A. Varykhalov, L. Patthey, M. Shi, J.B. Goedkoop, M.S. Golden, Nat. Phys. 7, 978 (2011)

    Google Scholar 

  120. Z. Yusof, B.O. Wells, T. Valla, P.D. Johnson, A.V. Fedorov, Q. Li, S.M. Loureiro, R.J. Cava, Phys. Rev. B 76, 165115 (2007)

    ADS  Google Scholar 

  121. A. Nicolaou, V. Brouet, M. Zacchigna, I. Vobornik, A. Tejeda, A. Taleb-Ibrahimi, P. Le Fèvre, F. Bertran, S. Hébert, H. Muguerra, D. Grebille, Phys. Rev. Lett. 104, 056403 (2010)

    ADS  Google Scholar 

  122. V. Brouet, A. Nicolaou, Publication in progress

    Google Scholar 

  123. M.W. Haverkort, I.S. Elfimov, L.H. Tjeng, G.A. Sawatzky, A. Damascelli, Phys. Rev. Lett. 101, 026406 (2008)

    ADS  Google Scholar 

  124. F. Baumberger, N.J.C. Ingle, W. Meevasana, K.M. Shen, D.H. Lu, R.S. Perry, A.P. Mackenzie, Z. Hussain, D.J. Singh, Z.X. Shen, Phys. Rev. Lett. 96, 246402 (2006)

    ADS  Google Scholar 

  125. B.J. Kim, J. Yu, H. Koh, I. Nagai, S.I. Ikeda, S.J. Oh, C. Kim, Phys. Rev. Lett. 97, 106401 (2006)

    ADS  Google Scholar 

  126. A. Earnshaw, B.N. Figgis, J. Lewis, R.D. Peacock, J. Chem. Soc. pp. 3132–3138 (1961) Please provide volume number for [126].

    Google Scholar 

  127. M. Platé, J.D.F. Mottershead, I.S. Elfimov, D.C. Peets, R. Liang, D.A. Bonn, W.N. Hardy, S. Chiuzbaian, M. Falub, M. Shi, L. Patthey, A. Damascelli, Phys. Rev. Lett. 95, 077001 (2005)

    ADS  Google Scholar 

  128. G. Cao, J. Bolivar, S. McCall, J.E. Crow, R.P. Guertin, Phys. Rev. B 57, R11039 (1998)

    ADS  Google Scholar 

  129. B.J. Kim, H. Jin, S.J. Moon, J.Y. Kim, B.G. Park, C.S. Leem, J. Yu, T.W. Noh, C. Kim, S.J. Oh, J.H. Park, V. Durairaj, G. Cao, E. Rotenberg, Phys. Rev. Lett. 101, 076402 (2008)

    ADS  Google Scholar 

  130. R. Arita, J. Kuneš, A.V. Kozhevnikov, A.G. Eguiluz, M. Imada, Phys. Rev. Lett. 108, 086403 (2012)

    ADS  Google Scholar 

  131. D. Hsieh, F. Mahmood, D.H. Torchinsky, G. Cao, N. Gedik, Phys. Rev. B 86, 035128 (2012)

    ADS  Google Scholar 

  132. R. Comin, G. Levy, B. Ludbrook, Z.H. Zhu, C.N. Veenstra, J.A. Rosen, Y. Singh, P. Gegenwart, D. Stricker, J.N. Hancock, D. van der Marel, I.S. Elfimov, A. Damascelli, Phys. Rev. Lett. 109, 266406 (2012)

    ADS  Google Scholar 

  133. A. Shitade, H. Katsura, J. Kuneš, X.L. Qi, S.C. Zhang, N. Nagaosa, Phys. Rev. Lett. 102, 256403 (2009)

    ADS  Google Scholar 

  134. H. Jin, H. Kim, H. Jeong, C.H. Kim, J. Yu, arXiv:0907.0743v1 2009

  135. J. Chaloupka, G. Jackeli, G. Khaliullin, Phys. Rev. Lett. 105, 027204 (2010)

    ADS  Google Scholar 

  136. Y. Singh, P. Gegenwart, Phys. Rev. B 82, 064412 (2010)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Damascelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Comin, R., Damascelli, A. (2015). ARPES: A Probe of Electronic Correlations. In: Avella, A., Mancini, F. (eds) Strongly Correlated Systems. Springer Series in Solid-State Sciences, vol 180. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44133-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44133-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44132-9

  • Online ISBN: 978-3-662-44133-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics