Nuclear Magnetic Resonance as a Probe of Strongly Correlated Electron Systems

Part of the Springer Series in Solid-State Sciences book series (SSSOL, volume 180)


Beginning with the pioneering NMR experiments of Hebel and Slichter in superconducting Aluminum, nuclear magnetic resonance (NMR) has played a central role in the study of strongly correlated electron matter. The relatively small energies associated with the nuclear spin degrees of freedom guarantee that the experimental probes of the nuclear spin behavior have little or no effect on the electronic degrees of freedom. On the other hand, the hyperfine coupling between the electronic and nuclear spins enables one to probe the static and dynamic properties of the electron spins through their effect on the nuclei. NMR offers detailed microscopic information about homogeneity, dynamics, and novel phases of electron matter and can probe under extreme conditions of high magnetic field, ultra low temperature, and high pressures. This chapter discusses the basics of NMR in condensed matter solids, including basic measurements such as the Knight shift, the hyperfine field, and the relaxation rates. To illustrate these concepts we discuss the case of field-induced antiferromagnetism and the exotic superconducting phase in CeCoIn\(_5\).


Nuclear Magnetic Resonance Density Matrix Hyperfine Field Nuclear Quadrupolar Resonance Hyperfine Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.P. Slichter, Principles of Nuclear Magnetic Resonance, 3rd edn. (Springer, New York, 1992)Google Scholar
  2. 2.
    E.L. Hahn, Phys. Rev. 80, 580 (1950)CrossRefzbMATHADSGoogle Scholar
  3. 3.
    J. Haase, M.S. Conradi, Chem. Phys. Lett. 209(3), 287 (1993)CrossRefADSGoogle Scholar
  4. 4.
    A.M. Clogston, V. Jaccarino, Phys. Rev. 121(5), 1357 (1961)CrossRefADSGoogle Scholar
  5. 5.
    R.E. Walstedt, R.F. Bell, L.F. Schneemeyer, J.V. Waszczak, G.P. Espinosa, Phys. Rev. B 45(14), 8074 (1992)CrossRefADSGoogle Scholar
  6. 6.
    N.J. Curro, Rep. Prog. Phys. 72(2), 026502 (24pp) (2009)Google Scholar
  7. 7.
    N.J. Curro, B.L. Young, J. Schmalian, D. Pines, Phys. Rev. B 70(23), 235117 (2004)CrossRefADSGoogle Scholar
  8. 8.
    N.J. Curro, B. Simovic, P.C. Hammel, P.G. Pagliuso, J.L. Sarrao, J.D. Thompson, G.B. Martins, Phys. Rev. B 64(18), 180514 (2001)CrossRefADSGoogle Scholar
  9. 9.
    Y.F. Yang, Z. Fisk, H.O. Lee, J.D. Thompson, D. Pines, Nature 454, 611 (2008)CrossRefADSGoogle Scholar
  10. 10.
    D. Pines, Phys. Rev. 95(4), 1090 (1954)CrossRefzbMATHADSGoogle Scholar
  11. 11.
    A. Bianchi, R. Movshovich, C. Capan, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 91(18), 187004 (2003)CrossRefADSGoogle Scholar
  12. 12.
    T. Moriya, J. Phys. Soc. Jpn. 18(4), 516 (1963)CrossRefADSGoogle Scholar
  13. 13.
    S.E. Barrett, J.A. Martindale, D.J. Durand, C.H. Pennington, C.P. Slichter, T.A. Friedmann, J.P. Rice, D.M. Ginsberg, Phys. Rev. Lett. 66(1), 108 (1991)CrossRefADSGoogle Scholar
  14. 14.
    C. Petrovic, R. Movshovich, M. Jaime, P.G. Pagliuso, M.F. Hundley, J.L. Sarrao, Z. Fisk, J.D. Thompson, Europhys. Lett. 53(3), 354 (2001)CrossRefADSGoogle Scholar
  15. 15.
    K. Maki, T. Tsuneto, Prog. Theor. Phys. 31, 945 (1964)CrossRefADSGoogle Scholar
  16. 16.
    P. Fulde, R.A. Ferrell, Phys. Rev. 135, A550 (1964)CrossRefADSGoogle Scholar
  17. 17.
    A.I. Larkin, Y.N. Ovchinnikov, Sov. Phys. JETP 20, 762 (1965)MathSciNetGoogle Scholar
  18. 18.
    A.B. Vorontsov, M.J. Graf, Phys. Rev. B 74, 172504 (2006)CrossRefADSGoogle Scholar
  19. 19.
    A. Bianchi, R. Movshovich, N. Oeschler, P. Gegenwart, F. Steglich, J.D. Thompson, P.G. Pagliuso, J.L. Sarrao, Phys. Rev. Lett. 89(13), 137002 (2002)CrossRefADSGoogle Scholar
  20. 20.
    H.A. Radovan, N.A. Fortune, T.P. Murphy, S.T. Hannahs, E.C. Palm, S.W. Tozer, D. Hall, Nature 425, 51 (2003)CrossRefADSGoogle Scholar
  21. 21.
    K. Kakuyanagi, M. Saitoh, K. Kumagai, S. Takashima, M. Nohara, H. Takagi, Y. Matsuda, Phys. Rev. Lett. 94(4), 047602 (2005)CrossRefADSGoogle Scholar
  22. 22.
    B.L. Young, R.R. Urbano, N.J. Curro, J.D. Thompson, J.L. Sarrao, A.B. Vorontsov, M.J. Graf, Phys. Rev. Lett. 98, 036402 (2007)CrossRefADSGoogle Scholar
  23. 23.
    V.F. Mitrović, G. Koutroulakis, M. Klanjšek, M. Horvatić, C. Berthier, G. Knebel, G. Lapertot, J. Flouquet, Phys. Rev. Lett. 101(3), 039701 (2008)CrossRefADSGoogle Scholar
  24. 24.
    V.F. Mitrovic, M. Horvatic, C. Berthier, G. Knebel, G. Lapertot, J. Flouquet, Phys. Rev. Lett. 97(11), 117002 (2006)CrossRefADSGoogle Scholar
  25. 25.
    A.B. Vorontsov, M.J. Graf, in AIP Conference Proceedings LT24 850, 729 (2006)Google Scholar
  26. 26.
    G. Koutroulakis, V.F. Mitrović, M. Horvatić, C. Berthier, G. Lapertot, J. Flouquet, Phys. Rev. Lett. 101(4), 047004 (2008)CrossRefADSGoogle Scholar
  27. 27.
    M. Kenzelmann, T. Strassle, C. Niedermayer, M. Sigrist, B. Padmanabhan, M. Zolliker, A.D. Bianchi, R. Movshovich, E.D. Bauer, J.L. Sarrao, J.D. Thompson, Science 321(5896), 1652 (2008)CrossRefADSGoogle Scholar
  28. 28.
    G. Koutroulakis, M.D. Stewart, V.F. Mitrović, M. Horvatić, C. Berthier, G. Lapertot, J. Flouquet, Phys. Rev. Lett. 104, 087001 (2010)CrossRefADSGoogle Scholar
  29. 29.
    K. Kumagai, H. Shishido, T. Shibauchi, Y. Matsuda, Phys. Rev. Lett. 106, 137004 (2011)CrossRefADSGoogle Scholar
  30. 30.
    N.J. Curro, B.L. Young, R.R. Urbano, M.J. Graf, J. Low Temp. Phys. 2010, 635 (2009)Google Scholar
  31. 31.
    A.D. Bianchi, M. Kenzelmann, L. DeBeer-Schmitt, J.S. White, E.M. Forgan, J. Mesot, M. Zolliker, J. Kohlbrecher, R. Movshovich, E.D. Bauer, J.L. Sarrao, Z. Fisk, C. Petrovic, M.R. Eskildsen, Science 319, 177 (2008)Google Scholar
  32. 32.
    M. Kenzelmann, S. Gerber, N. Egetenmeyer, J.L. Gavilano, T. Strässle, A.D. Bianchi, E. Ressouche, R. Movshovich, E.D. Bauer, J.L. Sarrao, J.D. Thompson, Phys. Rev. Lett. 104, 127001 (2010)CrossRefADSGoogle Scholar
  33. 33.
    D.F. Agterberg, M. Sigrist, H. Tsunetsugu, Phys. Rev. Lett. 102(20), 207004 (2009)CrossRefADSGoogle Scholar
  34. 34.
    A. Aperis, G. Varelogiannis, P.B. Littlewood, Phys. Rev. Lett. 104, 216403 (2010)CrossRefADSGoogle Scholar
  35. 35.
    Y. Yanase, M. Sigrist, J. Phys. Soc. Jpn. 78(11), 114715 (2009)CrossRefGoogle Scholar
  36. 36.
    Y. Kato, C.D. Batista, I. Vekhter, Phys. Rev. Lett. 107, 096401 (2011)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaDavisUSA

Personalised recommendations