Skip to main content

Part of the book series: Cognitive Systems Monographs ((COSMOS,volume 24))

  • 1475 Accesses

Abstract

Neuro-Biomechanics of Human Movement, introduces the scientific theoretical background for this book (see Fig. 2.1), which is later applied to modern technological advances (presented in the next chapter). This background theory ranges from the neurophysiological to thermodynamical bases of human movement, across anatomical, physiological, mechanical and computational aspects. It was the intention of the authors to develop this book as far as possible without any mathematical equations (with a little exception related to the father of biomechanics, Sir A.V. Hill), so there are no equations prior to the section on Computational Biomechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borelli, G.A.: De Motu Animalium (I and II), Ex Typographia Angeli Bernabo, Rome (1680/1681)

    Google Scholar 

  2. Maquet, P.: Borelli: De Motu Animalium. A first treatise on biomechanics (in French). Acta Orthop. Belg. 55(4), 541–546 (1989)

    Google Scholar 

  3. GA, Borelli: On the Movement of Animals. Springer, New York (1989)

    Google Scholar 

  4. Hill, A.V., Lupton, H.: Muscular exercise, lactic acid, and the supply and utilization of oxygen. Quart. J. Med. 16, 135 (1923)

    Article  Google Scholar 

  5. Hill, A.V., Long, C.N.H., Lupton, H.: Muscular exercise, lactic acid and the supply and utilization of oxygen, Parts I–III. Proc. Roy. Soc. B 96, 438 (1924)

    Article  Google Scholar 

  6. Hill, A.V., Long, C.N.H., Lupton, H.: Muscular exercise, lactic acid and the supply and utilization of oxygen, Parts IV–VI. Proc. Roy. Soc. B 97, 84 (1924)

    Article  Google Scholar 

  7. Hill, A.V., Long, C.N.H., Lupton, H.: Muscular exercise, lactic acid and the supply and utilization of oxygen, Parts VII–IX. Proc. Roy. Soc. B 97, 155 (1924)

    Article  Google Scholar 

  8. Hill, A.V.: The scientific study of athletics. Sci. Am. 134(4), 224–225 (1926)

    Article  Google Scholar 

  9. Hill, A.V.: Muscular Activity. University of Pennsylvania Press, Philadelphia (1926)

    Google Scholar 

  10. Hill, A.V.: Muscular Activity: Herter Lectures—Sixteenth Course. Williams & Wilkins Company, Baltimore (1926)

    Google Scholar 

  11. Hill, A.V.: Muscular Movement in Man: The Factors Governing Speed and Recovery from Fatigue. McGraw-Hill, New York (1927)

    Google Scholar 

  12. Hill, A.V.: Living Machinery. Harcourt Brace and Company, New York (1927)

    Google Scholar 

  13. Bassett, D.R.: Scientific contributions of A. V. Hill: exercise physiology pioneer. J. Appl. Physiol. 93, 1567–1582 (2002)

    Google Scholar 

  14. Hill, A.V.: The heat of shortening and the dynamic constants of muscle. Proc. Roy. Soc. B 76, 136–195 (1938)

    Article  Google Scholar 

  15. Hill, A.V.: The dynamic constants of human muscle. Proc. Roy. Soc. B 128, 263–274 (1940)

    Article  Google Scholar 

  16. Hill, A.V.: The series elastic component of muscles. Proc. Roy. Soc. B 137, 273–280 (1950)

    Article  Google Scholar 

  17. Hill, A.V.: First and Last Experiments in Muscle Mechanics. Cambridge University Press, London (1970)

    Google Scholar 

  18. Scovil, C.Y., Ronsky, J.L.: Sensitivity of a Hill-based muscle model to perturbations in model parameters. J. Biomech. 39, 20552063 (2006)

    Google Scholar 

  19. Anohin, P.K.: Essays on the Physiology of Functional Systems (in Russian). Medicine, Moscow (1975)

    Google Scholar 

  20. Anohin, P.K.: Philosophical Aspects of the Theory of Functional Systems (in Russian). Science, Moscow (1978)

    Google Scholar 

  21. Anohin, P.K.: Key Questions of the Theory of Functional Systems (in Russian). Science, Moscow (1980)

    Google Scholar 

  22. Anohin, P.K.: Cybernetics of Functional Systems (in Russian). Medicine, Moscow (1998)

    Google Scholar 

  23. Sudakov, K.V.: Theory of Functional Systems (in Russian). Medicine, Moscow (1996)

    Google Scholar 

  24. Danilova, N.N., Krylov, A.L.: Physiology of Higher Nervous Activity (in Russian). MGU Textbooks, Phoenix (2005)

    Google Scholar 

  25. Ivancevic, T., Ivancevic, V., Jovanovic, B.: Geometric Methods in Modern Biomechanics. Nova Science Publishers, New York (2012)

    Google Scholar 

  26. Ivancevic, V., Ivancevic, T.: Human versus humanoid biodynamics. J. Humanoid Robotics 5(4), 699–713 (2008)

    Article  MathSciNet  Google Scholar 

  27. Bernstein, N.A.: The Co-ordination and Regulation of Movements. Pergamon Press, Oxford (1967)

    Google Scholar 

  28. Chu, D.: Jumping into Plyometrics, 2nd edn. Human Kinetics, Champaign (1998)

    Google Scholar 

  29. Sherrington, C.S.: The Integrative Action of the Nervous System. Yale University Press, New Haven (1906)

    Google Scholar 

  30. Houk, J.C.: Feedback control of skeletal muscles. Brain Res. 5, 433–451 (1967)

    Article  Google Scholar 

  31. Houk, J.C.: Regulation of stiffness by skeletomotor reflexes. Ann. Rev. Physiol. 41, 99–114 (1979)

    Article  Google Scholar 

  32. Gray, H.: Anatomy of the Human Body (20th U.S. ed.). Online internet version (2014). http://www.bartleby.com/107/

  33. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Google Scholar 

  34. Hodgkin, A.L.: The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool (1964)

    Google Scholar 

  35. Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J. Physiol. 160, 317–352 (1962)

    Google Scholar 

  36. Huxley, A.F.: Muscle structure and theories of contraction. Prog. Biophys. Biophys. Chem. 7, 255–318 (1957)

    Google Scholar 

  37. Huxley, A.F., Simmons, R.M.: Mechanical properties of the cross-bridges of frog striated muscle. J. Physiol. 218, 59–60 (1971)

    Google Scholar 

  38. Huxley, A.F.: Muscular contraction. J. Physiol. 243, 143 (1974)

    Google Scholar 

  39. Hatze, H.: A complete set of control equations for the human musculo-skeletal system. J. Biomech. 10, 799–805 (1977)

    Article  Google Scholar 

  40. Hatze, H.: A myocybernetic control model of skeletal muscle. Biol. Cybern. 25, 103–119 (1977)

    MATH  Google Scholar 

  41. Hatze, H.: Ageneral myocybernetic control model of skeletal muscle. Biol. Cybern. 39, 165–170 (1981)

    Google Scholar 

  42. Hatze, H.: A comprehensive model for human motion simulation and its application to the take-off phase of the long jump. J. Biomech. 14, 135–142 (1981)

    Article  Google Scholar 

  43. Hatze, H.: Dynamics of the musculoskeletal system. J. Biomech. 18, 515–527 (1985)

    Article  Google Scholar 

  44. Davydov, A.S.: The theory of contraction of proteins under their excitation. J. Theory Biol. 38(3), 559–569 (1973)

    Article  Google Scholar 

  45. Davydov, A.S.: Quantum theory of muscular contraction. Biophysics 19, 684–691 (1974)

    Google Scholar 

  46. Davydov, A.S.: Solitons and energy transfer along protein molecules. J. Theory Biol. 66(2), 379–387 (1977)

    Article  Google Scholar 

  47. Ivancevic, V., Ivancevic, T.: Human-Like Biomechanics. Springer, Heidelberg (2006)

    Google Scholar 

  48. Ivancevic, V., Ivancevic, T.: Natural Biodynamics. World Scientific, Singapore (2006)

    Google Scholar 

  49. Ivancevic, V., Ivancevic, T.: Geometrical Dynamics of Complex Systems. Springer, Dordrecht (2006)

    Google Scholar 

  50. Ivancevic, V., Ivancevic, T.: Applied Differential Geometry: A Modern Introduction. World Scientific, Singapore (2007)

    Book  Google Scholar 

  51. Ivancevic, V., Ivancevic, T.: Complex Nonlinearity: Chaos, Phase Transitions, Topology Change and Path Integrals. Springer, Berlin (2008)

    Google Scholar 

  52. Ivancevic, V.: New mechanics of traumatic brain injury. Cogn. Neurodyn. 3, 281–293 (2009)

    Article  Google Scholar 

  53. Ivancevic, V.: New mechanics of spinal injury. Int. J. Appl Mech. 1(2), 387–401 (2009)

    Article  Google Scholar 

  54. Ivancevic, V.: New mechanics of generic musculo-skeletal injury. Biophys. Rev. Let. 4(3), 273–287 (2009)

    Article  MathSciNet  Google Scholar 

  55. Wells, D.A.: Schaum’s Lagrangian Dynamics. McGraw-Hill, New York (1967)

    Google Scholar 

  56. Weisstein, E.W.: Double Pendulum, ScienceWorld. University Science, Sausalito (2005)

    Google Scholar 

  57. Panjabi, M.M., et al.: Mechanism of whiplash injury. Clin. Biomech. 13, 239–249 (1998)

    Article  Google Scholar 

  58. Winter, D.A.: Biomechanics and Motor Control of Human Movement, 2nd edn. Wiley, Toronto (1990)

    Google Scholar 

  59. Alqasemi, R., Dubey, R.: A 9-DoF Wheelchair-Mounted Robotic Arm System: Design, Control, Brain-Computer Interfacing, and Testing. A Chapter in Advances in Robot Manipulators (E. Hall ed.). Intech, Vienna (2010)

    Google Scholar 

  60. Prigogine, I.: Introduction to Thermodynamics of Irreversible Processes (3rd ed.). Wiley Interscience, New York (1955/1961/1967)

    Google Scholar 

  61. Prigogine, I.: French Original: Étude Thermodynamique des Phenomènes Irreversibles. Desoer, Liege (1947)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tijana Ivancevic .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ivancevic, T., Greenberg, H., Greenberg, R. (2015). Neuro-Biomechanics of Human Movement. In: Enhancing Performance and Reducing Stress in Sports: Technological Advances. Cognitive Systems Monographs, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44096-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44096-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44095-7

  • Online ISBN: 978-3-662-44096-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics