Skip to main content

Gender Differences in Production and Circulating Levels of Sex Hormones and Their Impact on Aging Skin

  • Chapter
  • First Online:
Skin, Mucosa and Menopause

Abstract

Serum concentrations of the sex steroids, which modulate skin structure and function, differ in aging men and women. Serum estradiol levels are unaffected by age in men, but in women, postmenopausal estrogen deficiency results in thinner, drier skin with a lower collagen content and reduced elasticity. Dehydroepiandrosterone and its sulfate form, produced by the adrenals, decline dramatically with age in both sexes, but serum concentrations are consistently lower in women. This steroid becomes the predominant source of both androgen and estrogen synthesis following menopause, and its supplementation increases skin thickness, hydration, and sebum production. Serum androgen levels decline slowly with age in men, but remain higher than in postmenopausal women. Consequently, wound healing, which is inhibited by androgens, is compromised to a greater degree in older men than women. Local synthesis of the sex steroids affects the eccrine sweat glands and hair follicles. Senile sebaceous gland hyperplasia, whereby the sebaceous gland compensates for reduced lipogenesis, is more prominent and occurs earlier in females. Dihydrotestosterone miniaturizes and reduces the number of anagen hair follicles in genetically susceptible men, leading to male-pattern baldness (androgenetic alopecia). Its impact is limited in women because their scalp hair follicles express lower levels of 5α-reductase and androgen receptor and higher levels of aromatase, which reduces the production and action of dihydrotestosterone. Thermoregulation by sweating appears to be compromised with age in both sexes. In short, circulating levels of sex hormones and the expression of key steroidogenic enzymes and receptors within the skin itself influence certain gender differences in aging skin.

A version of this chapter appeared as an open-access article by Farage et al., Journal of Steroids Hormonal Science 2012, 3:2, (OMICS Publishing Group, www.omicsonline.org) http://dx.doi.org/10.4172/2157-7536.1000109 and is reproduced under the terms of the Creative Commons Attribution License.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zouboulis CC, Makrantonaki E. Clinical aspects and molecular diagnostics of skin aging. Clin Dermatol. 2011;29(1):3–14. doi:10.1016/j.clindermatol.2010.07.001.

    PubMed  Google Scholar 

  2. Labrie F, Belanger A, Cusan L, Candas B. Physiological changes in dehydroepiandrosterone are not reflected by serum levels of active androgens and estrogens but of their metabolites: intracrinology. J Clin Endocrinol Metab. 1997;82(8):2403–9.

    CAS  PubMed  Google Scholar 

  3. Ravaglia G, Forti P, Maioli F, Boschi F, Bernardi M, Pratelli L, Pizzoferrato A, Gasbarrini G. The relationship of dehydroepiandrosterone sulfate (DHEAS) to endocrine-metabolic parameters and functional status in the oldest-old. Results from an Italian study on healthy free-living over-ninety-year-olds. J Clin Endocrinol Metab. 1996;81(3):1173–8.

    CAS  PubMed  Google Scholar 

  4. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87(2):589–98.

    CAS  PubMed  Google Scholar 

  5. Kaaks R, Berrino F, Key T, Rinaldi S, Dossus L, Biessy C, Secreto G, Amiano P, Bingham S, Boeing H, Bueno de Mesquita HB, Chang-Claude J, Clavel-Chapelon F, Fournier A, van Gils CH, Gonzalez CA, Gurrea AB, Critselis E, Khaw KT, Krogh V, Lahmann PH, Nagel G, Olsen A, Onland-Moret NC, Overvad K, Palli D, Panico S, Peeters P, Quiros JR, Roddam A, Thiebaut A, Tjonneland A, Chirlaque MD, Trichopoulou A, Trichopoulos D, Tumino R, Vineis P, Norat T, Ferrari P, Slimani N, Riboli E. Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst. 2005;97(10):755–65. doi:10.1093/jnci/dji132.

    CAS  PubMed  Google Scholar 

  6. Burger HG, Dudley EC, Cui J, Dennerstein L, Hopper JL. A prospective longitudinal study of serum testosterone, dehydroepiandrosterone sulfate, and sex hormone-binding globulin levels through the menopause transition. J Clin Endocrinol Metab. 2000;85(8):2832–8.

    CAS  PubMed  Google Scholar 

  7. Burger HG. Androgen production in women. Fertil Steril. 2002;77 Suppl 4:S3–5.

    PubMed  Google Scholar 

  8. Labrie F, Belanger A, Luu-The V, Labrie C, Simard J, Cusan L, Gomez JL, Candas B. DHEA and the intracrine formation of androgens and estrogens in peripheral target tissues: its role during aging. Steroids. 1998;63(5–6):322–8.

    CAS  PubMed  Google Scholar 

  9. Harman SM, Metter EJ, Tobin JD, Pearson J, Blackman MR. Longitudinal effects of aging on serum total and free testosterone levels in healthy men. Baltimore longitudinal study of aging. J Clin Endocrinol Metab. 2001;86(2):724–31.

    CAS  PubMed  Google Scholar 

  10. Laughlin GA, Barrett-Connor E, Kritz-Silverstein D, von Muhlen D. Hysterectomy, oophorectomy, and endogenous sex hormone levels in older women: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2000;85(2):645–51.

    CAS  PubMed  Google Scholar 

  11. Gapstur SM, Gann PH, Kopp P, Colangelo L, Longcope C, Liu K. Serum androgen concentrations in young men: a longitudinal analysis of associations with age, obesity, and race. The CARDIA male hormone study. Cancer Epidemiol Biomarkers Prev. 2002;11(10 Pt 1):1041–7.

    CAS  PubMed  Google Scholar 

  12. Sinha-Hikim I, Arver S, Beall G, Shen R, Guerrero M, Sattler F, Shikuma C, Nelson JC, Landgren BM, Mazer NA, Bhasin S. The use of a sensitive equilibrium dialysis method for the measurement of free testosterone levels in healthy, cycling women and in human immunodeficiency virus-infected women. J Clin Endocrinol Metab. 1998;83(4):1312–8.

    CAS  PubMed  Google Scholar 

  13. Labrie F, Cusan L, Gomez JL, Martel C, Berube R, Belanger P, Belanger A, Vandenput L, Mellstrom D, Ohlsson C. Comparable amounts of sex steroids are made outside the gonads in men and women: strong lesson for hormone therapy of prostate and breast cancer. J Steroid Biochem Mol Biol. 2009;113(1–2):52–6. doi:10.1016/j.jsbmb.2008.11.004.

    CAS  PubMed  Google Scholar 

  14. Secreto G, Toniolo P, Pisani P, Recchione C, Cavalleri A, Fariselli G, Totis A, Di Pietro S, Berrino F. Androgens and breast cancer in premenopausal women. Cancer Res. 1989;49(2):471–6.

    CAS  PubMed  Google Scholar 

  15. Secreto G, Toniolo P, Berrino F, Recchione C, Cavalleri A, Pisani P, Totis A, Fariselli G, Di Pietro S. Serum and urinary androgens and risk of breast cancer in postmenopausal women. Cancer Res. 1991;51(10):2572–6.

    CAS  PubMed  Google Scholar 

  16. Vermeulen A, Kaufman JM, Goemaere S, van Pottelberg I. Estradiol in elderly men. Aging Male. 2002;5(2):98–102.

    CAS  PubMed  Google Scholar 

  17. Legrain S, Girard L. Pharmacology and therapeutic effects of dehydroepiandrosterone in older subjects. Drugs Aging. 2003;20(13):949–67.

    CAS  PubMed  Google Scholar 

  18. Labrie F. DHEA, important source of sex steroids in men and even more in women. Prog Brain Res. 2010;182:97–148. doi:10.1016/s0079-6123(10)82004-7.

    CAS  PubMed  Google Scholar 

  19. Belanger A, Candas B, Dupont A, Cusan L, Diamond P, Gomez JL, Labrie F. Changes in serum concentrations of conjugated and unconjugated steroids in 40- to 80-year-old men. J Clin Endocrinol Metab. 1994;79(4):1086–90.

    CAS  PubMed  Google Scholar 

  20. Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59(3):551–5.

    CAS  PubMed  Google Scholar 

  21. Sulcova J, Hill M, Hampl R, Starka L. Age and sex related differences in serum levels of unconjugated dehydroepiandrosterone and its sulphate in normal subjects. J Endocrinol. 1997;154(1):57–62.

    CAS  PubMed  Google Scholar 

  22. Laughlin GA, Barrett-Connor E. Sexual dimorphism in the influence of advanced aging on adrenal hormone levels: the Rancho Bernardo Study. J Clin Endocrinol Metab. 2000;85(10):3561–8.

    CAS  PubMed  Google Scholar 

  23. Mazat L, Lafont S, Berr C, Debuire B, Tessier JF, Dartigues JF, Baulieu EE. Prospective measurements of dehydroepiandrosterone sulfate in a cohort of elderly subjects: relationship to gender, subjective health, smoking habits, and 10-year mortality. Proc Natl Acad Sci U S A. 2001;98(14):8145–50. doi:10.1073/pnas.121177998.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Labrie F, Martel C, Balser J. Wide distribution of the serum dehydroepiandrosterone and sex steroid levels in postmenopausal women: role of the ovary? Menopause. 2011;18(1):30–43. doi:10.1097/gme.0b013e3181e195a6.

    PubMed  Google Scholar 

  25. Moghissi E, Ablan F, Horton R. Origin of plasma androstanediol glucuronide in men. J Clin Endocrinol Metab. 1984;59(3):417–21.

    CAS  PubMed  Google Scholar 

  26. Vermeulen A. The hormonal activity of the postmenopausal ovary. J Clin Endocrinol Metab. 1976;42(2):247–53.

    CAS  PubMed  Google Scholar 

  27. Overlie I, Moen MH, Morkrid L, Skjaeraasen JS, Holte A. The endocrine transition around menopause – a five years prospective study with profiles of gonadotropines, estrogens, androgens and SHBG among healthy women. Acta Obstet Gynecol Scand. 1999;78(7):642–7.

    CAS  PubMed  Google Scholar 

  28. Nagamani M, Urban RJ. Expression of messenger ribonucleic acid encoding steroidogenic enzymes in postmenopausal ovaries. J Soc Gynecol Investig. 2003;10(1):37–40.

    CAS  PubMed  Google Scholar 

  29. Havelock JC, Rainey WE, Bradshaw KD, Carr BR. The post-menopausal ovary displays a unique pattern of steroidogenic enzyme expression. Hum Reprod. 2006;21(1):309–17. doi:10.1093/humrep/dei373.

    CAS  PubMed  Google Scholar 

  30. Couzinet B, Meduri G, Lecce MG, Young J, Brailly S, Loosfelt H, Milgrom E, Schaison G. The postmenopausal ovary is not a major androgen-producing gland. J Clin Endocrinol Metab. 2001;86(10):5060–6.

    CAS  PubMed  Google Scholar 

  31. Longcope C, Franz C, Morello C, Baker R, Johnston Jr CC. Steroid and gonadotropin levels in women during the peri-menopausal years. Maturitas. 1986;8(3):189–96.

    CAS  PubMed  Google Scholar 

  32. Horton R, Tait JF. Androstenedione production and interconversion rates measured in peripheral blood and studies on the possible site of its conversion to testosterone. J Clin Invest. 1966;45(3):301–13. doi:10.1172/JCI105344.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Gray A, Feldman HA, McKinlay JB, Longcope C. Age, disease, and changing sex hormone levels in middle-aged men: results of the Massachusetts Male Aging Study. J Clin Endocrinol Metab. 1991;73(5):1016–25.

    CAS  PubMed  Google Scholar 

  34. Morley JE, Kaiser FE, Perry 3rd HM, Patrick P, Morley PM, Stauber PM, Vellas B, Baumgartner RN, Garry PJ. Longitudinal changes in testosterone, luteinizing hormone, and follicle-stimulating hormone in healthy older men. Metabolism. 1997;46(4):410–3.

    CAS  PubMed  Google Scholar 

  35. Wu FC, Tajar A, Pye SR, Silman AJ, Finn JD, O’Neill TW, Bartfai G, Casanueva F, Forti G, Giwercman A, Huhtaniemi IT, Kula K, Punab M, Boonen S, Vanderschueren D. Hypothalamic-pituitary-testicular axis disruptions in older men are differentially linked to age and modifiable risk factors: the European Male Aging Study. J Clin Endocrinol Metab. 2008;93(7):2737–45. doi:10.1210/jc.2007-1972.

    CAS  PubMed  Google Scholar 

  36. Bremner WJ, Vitiello MV, Prinz PN. Loss of circadian rhythmicity in blood testosterone levels with aging in normal men. J Clin Endocrinol Metab. 1983;56(6):1278–81.

    CAS  PubMed  Google Scholar 

  37. Judd HL, Yen SS. Serum androstenedione and testosterone levels during the menstrual cycle. J Clin Endocrinol Metab. 1973;36(3):475–81.

    CAS  PubMed  Google Scholar 

  38. Burger HG, Dudley EC, Hopper JL, Groome N, Guthrie JR, Green A, Dennerstein L. Prospectively measured levels of serum follicle-stimulating hormone, estradiol, and the dimeric inhibins during the menopausal transition in a population-based cohort of women. J Clin Endocrinol Metab. 1999;84(11):4025–30.

    CAS  PubMed  Google Scholar 

  39. Luu-The V, Dufort I, Pelletier G, Labrie F. Type 5 17beta-hydroxysteroid dehydrogenase: its role in the formation of androgens in women. Mol Cell Endocrinol. 2001;171(1–2):77–82.

    CAS  PubMed  Google Scholar 

  40. Baird DT, Horton R, Longcope C, Tait JF. Steroid dynamics under steady-state conditions. Recent Prog Horm Res. 1969;25:611–64.

    CAS  PubMed  Google Scholar 

  41. MacDonald PC, Madden JD, Brenner PF, Wilson JD, Siiteri PK. Origin of estrogen in normal men and in women with testicular feminization. J Clin Endocrinol Metab. 1979;49(6):905–16.

    CAS  PubMed  Google Scholar 

  42. Saez JM, Morera AM, Dazord A, Bertrand J. Adrenal and testicular contribution to plasma oestrogens. J Endocrinol. 1972;55(1):41–9.

    CAS  PubMed  Google Scholar 

  43. Nankin HR, Pinto R, Fan DF, Troen P. Daytime titers of testosterone, LH, estrone, estradiol, and testosterone-binding protein: acute effects of LH and LH-releasing hormone in men. J Clin Endocrinol Metab. 1975;41(2):271–81.

    CAS  PubMed  Google Scholar 

  44. Khosla S, Melton 3rd LJ, Atkinson EJ, O’Fallon WM. Relationship of serum sex steroid levels to longitudinal changes in bone density in young versus elderly men. J Clin Endocrinol Metab. 2001;86(8):3555–61.

    CAS  PubMed  Google Scholar 

  45. van den Beld AW, de Jong FH, Grobbee DE, Pols HA, Lamberts SW. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle strength, bone density, and body composition in elderly men. J Clin Endocrinol Metab. 2000;85(9):3276–82.

    PubMed  Google Scholar 

  46. Leifke E, Gorenoi V, Wichers C, Von Zur MA, Von Buren E, Brabant G. Age-related changes of serum sex hormones, insulin-like growth factor-1 and sex-hormone binding globulin levels in men: cross-sectional data from a healthy male cohort. Clin Endocrinol (Oxf). 2000;53(6):689–95.

    CAS  Google Scholar 

  47. Vermeulen A, Goemaere S, Kaufman JM. Testosterone, body composition and aging. J Endocrinol Invest. 1999;22(5):110–6.

    CAS  PubMed  Google Scholar 

  48. Vermeulen A, Goemaere S, Kaufman JM. Sex hormones, body composition and aging. Aging Male. 1999;2:8–11.

    Google Scholar 

  49. Zouboulis CC, Chen WC, Thornton MJ, Qin K, Rosenfield R. Sexual hormones in human skin. Horm Metab Res. 2007;39(2):85–95. doi:10.1055/s-2007-961807.

    CAS  PubMed  Google Scholar 

  50. Makrantonaki E, Zouboulis CC. Androgens and ageing of the skin. Curr Opin Endocrinol Diabetes Obes. 2009;16(3):240–5. doi:10.1097/MED.0b013e32832b71dc.

    CAS  PubMed  Google Scholar 

  51. Chen W, Tsai SJ, Sheu HM, Tsai JC, Zouboulis CC. Testosterone synthesized in cultured human SZ95 sebocytes derives mainly from dehydroepiandrosterone. Exp Dermatol. 2010;19(5):470–2. doi:10.1111/j.1600-0625.2009.00996.x.

    CAS  PubMed  Google Scholar 

  52. Fritsch M, Orfanos CE, Zouboulis CC. Sebocytes are the key regulators of androgen homeostasis in human skin. J Invest Dermatol. 2001;116(5):793–800. doi:10.1046/j.0022-202x.2001.doc.x.

    CAS  PubMed  Google Scholar 

  53. Thornton MJ, Nelson LD, Taylor AH, Birch MP, Laing I, Messenger AG. The modulation of aromatase and estrogen receptor alpha in cultured human dermal papilla cells by dexamethasone: a novel mechanism for selective action of estrogen via estrogen receptor beta? J Invest Dermatol. 2006;126(9):2010–8. doi:10.1038/sj.jid.5700344.

    CAS  PubMed  Google Scholar 

  54. Chen W, Thiboutot D, Zouboulis CC. Cutaneous androgen metabolism: basic research and clinical perspectives. J Invest Dermatol. 2002;119(5):992–1007. doi:10.1046/j.1523-1747.2002.00613.x.

    CAS  PubMed  Google Scholar 

  55. Milewich L, Sontheimer RD, Herndon Jr JH. Steroid sulfatase activity in epidermis of acne-prone and non-acne-prone skin of patients with acne vulgaris. Arch Dermatol. 1990;126(10):1312–4.

    CAS  PubMed  Google Scholar 

  56. Deplewski D, Rosenfield RL. Role of hormones in pilosebaceous unit development. Endocr Rev. 2000;21(4):363–92.

    CAS  PubMed  Google Scholar 

  57. Samson M, Labrie F, Zouboulis CC, Luu-The V. Biosynthesis of dihydrotestosterone by a pathway that does not require testosterone as an intermediate in the SZ95 sebaceous gland cell line. J Invest Dermatol. 2010;130(2):602–4. doi:10.1038/jid.2009.225.

    CAS  PubMed  Google Scholar 

  58. Sawaya ME, Price VH. Different levels of 5alpha-reductase type I and II, aromatase, and androgen receptor in hair follicles of women and men with androgenetic alopecia. J Invest Dermatol. 1997;109(3):296–300.

    CAS  PubMed  Google Scholar 

  59. Thornton MJ, Taylor AH, Mulligan K, Al-Azzawi F, Lyon CC, O’Driscoll J, Messenger AG. The distribution of estrogen receptor beta is distinct to that of estrogen receptor alpha and the androgen receptor in human skin and the pilosebaceous unit. J Investig Dermatol Symp Proc. 2003;8(1):100–3. doi:10.1046/j.1523-1747.2003.12181.x.

    CAS  PubMed  Google Scholar 

  60. Zouboulis CC, Degitz K. Androgen action on human skin – from basic research to clinical significance. Exp Dermatol. 2004;13 Suppl 4:5–10. doi:10.1111/j.1600-0625.2004.00255.x.

    CAS  PubMed  Google Scholar 

  61. Thornton MJ, Taylor AH, Mulligan K, Al-Azzawi F, Lyon CC, O’Driscoll J, Messenger AG. Oestrogen receptor beta is the predominant oestrogen receptor in human scalp skin. Exp Dermatol. 2003;12(2):181–90.

    CAS  PubMed  Google Scholar 

  62. Haczynski J, Tarkowski R, Jarzabek K, Slomczynska M, Wolczynski S, Magoffin DA, Jakowicki JA, Jakimiuk AJ. Human cultured skin fibroblasts express estrogen receptor alpha and beta. Int J Mol Med. 2002;10(2):149–53.

    CAS  PubMed  Google Scholar 

  63. Haczynski J, Tarkowski R, Jarzabek K, Wolczynski S, Magoffin DA, Czarnocki KJ, Ziegert M, Jakowicki J, Jakimiuk AJ. Differential effects of estradiol, raloxifene and tamoxifen on estrogen receptor expression in cultured human skin fibroblasts. Int J Mol Med. 2004;13(6):903–8.

    CAS  PubMed  Google Scholar 

  64. Jee SH, Lee SY, Chiu HC, Chang CC, Chen TJ. Effects of estrogen and estrogen receptor in normal human melanocytes. Biochem Biophys Res Commun. 1994;199(3):1407–12. doi:10.1006/bbrc.1994.1387.

    CAS  PubMed  Google Scholar 

  65. Nading MA, Nanney LB, Boyd AS, Ellis DL. Estrogen receptor beta expression in nevi during pregnancy. Exp Dermatol. 2008;17(6):489–97. doi:10.1111/j.1600-0625.2007.00667.x.

    PubMed Central  PubMed  Google Scholar 

  66. Seidenari S, Pagnoni A, Di Nardo A, Giannetti A. Echographic evaluation with image analysis of normal skin: variations according to age and sex. Skin Pharmacol. 1994;7(4):201–9.

    CAS  PubMed  Google Scholar 

  67. Waller JM, Maibach HI. Age and skin structure and function, a quantitative approach (I): blood flow, pH, thickness, and ultrasound echogenicity. Skin Res Technol. 2005;11(4):221–35. doi:10.1111/j.0909-725X.2005.00151.x.

    PubMed  Google Scholar 

  68. McCallion R, Li Wan Po A. Dry and photo-aged skin: manifestations and management. J Clin Pharm Ther. 1993;18(1):15–32.

    CAS  PubMed  Google Scholar 

  69. Ashcroft GS, Horan MA, Herrick SE, Tarnuzzer RW, Schultz GS, Ferguson MW. Age-related differences in the temporal and spatial regulation of matrix metalloproteinases (MMPs) in normal skin and acute cutaneous wounds of healthy humans. Cell Tissue Res. 1997;290(3):581–91.

    CAS  PubMed  Google Scholar 

  70. Azzi L, El-Alfy M, Martel C, Labrie F. Gender differences in mouse skin morphology and specific effects of sex steroids and dehydroepiandrosterone. J Invest Dermatol. 2005;124(1):22–7. doi:10.1111/j.0022-202X.2004.23545.x.

    CAS  PubMed  Google Scholar 

  71. Markova MS, Zeskand J, McEntee B, Rothstein J, Jimenez SA, Siracusa LD. A role for the androgen receptor in collagen content of the skin. J Invest Dermatol. 2004;123(6):1052–6. doi:10.1111/j.0022-202X.2004.23494.x.

    CAS  PubMed  Google Scholar 

  72. Lee KS, Oh KY, Kim BC. Effects of dehydroepiandrosterone on collagen and collagenase gene expression by skin fibroblasts in culture. J Dermatol Sci. 2000;23(2):103–10.

    CAS  PubMed  Google Scholar 

  73. Shin MH, Rhie GE, Park CH, Kim KH, Cho KH, Eun HC, Chung JH. Modulation of collagen metabolism by the topical application of dehydroepiandrosterone to human skin. J Invest Dermatol. 2005;124(2):315–23. doi:10.1111/j.0022-202X.2004.23588.x.

    CAS  PubMed  Google Scholar 

  74. Fisher GJ, Varani J, Voorhees JJ. Looking older: fibroblast collapse and therapeutic implications. Arch Dermatol. 2008;144(5):666–72. doi:10.1001/archderm.144.5.666.

    PubMed Central  PubMed  Google Scholar 

  75. Varani J, Dame MK, Rittie L, Fligiel SE, Kang S, Fisher GJ, Voorhees JJ. Decreased collagen production in chronologically aged skin: roles of age-dependent alteration in fibroblast function and defective mechanical stimulation. Am J Pathol. 2006;168(6):1861–8. doi:10.2353/ajpath.2006.051302.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Brincat M, Kabalan S, Studd JW, Moniz CF, de Trafford J, Montgomery J. A study of the decrease of skin collagen content, skin thickness, and bone mass in the postmenopausal woman. Obstet Gynecol. 1987;70(6):840–5.

    CAS  PubMed  Google Scholar 

  77. Brincat M, Moniz CF, Kabalan S, Versi E, O’Dowd T, Magos AL, Montgomery J, Studd JW. Decline in skin collagen content and metacarpal index after the menopause and its prevention with sex hormone replacement. Br J Obstet Gynaecol. 1987;94(2):126–9.

    CAS  PubMed  Google Scholar 

  78. Pierard GE, Letawe C, Dowlati A, Pierard-Franchimont C. Effect of hormone replacement therapy for menopause on the mechanical properties of skin. J Am Geriatr Soc. 1995;43(6):662–5.

    CAS  PubMed  Google Scholar 

  79. Pierard-Franchimont C, Cornil F, Dehavay J, Deleixhe-Mauhin F, Letot B, Pierard GE. Climacteric skin ageing of the face–a prospective longitudinal comparative trial on the effect of oral hormone replacement therapy. Maturitas. 1999;32(2):87–93.

    CAS  PubMed  Google Scholar 

  80. Elias PM, Ghadially R. The aged epidermal permeability barrier: basis for functional abnormalities. Clin Geriatr Med. 2002;18(1):103–20. vii.

    PubMed  Google Scholar 

  81. Ghadially R, Brown BE, Sequeira-Martin SM, Feingold KR, Elias PM. The aged epidermal permeability barrier. Structural, functional, and lipid biochemical abnormalities in humans and a senescent murine model. J Clin Invest. 1995;95(5):2281–90. doi:10.1172/JCI117919.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Reed JT, Ghadially R, Elias PM. Skin type, but neither race nor gender, influence epidermal permeability barrier function. Arch Dermatol. 1995;131(10):1134–8.

    CAS  PubMed  Google Scholar 

  83. Kao JS, Garg A, Mao-Qiang M, Crumrine D, Ghadially R, Feingold KR, Elias PM. Testosterone perturbs epidermal permeability barrier homeostasis. J Invest Dermatol. 2001;116(3):443–51. doi:10.1046/j.1523-1747.2001.01281.x.

    CAS  PubMed  Google Scholar 

  84. Tsutsumi M, Denda M. Paradoxical effects of beta-estradiol on epidermal permeability barrier homeostasis. Br J Dermatol. 2007;157(4):776–9. doi:10.1111/j.1365-2133.2007.08115.x.

    CAS  PubMed  Google Scholar 

  85. Hanley K, Rassner U, Jiang Y, Vansomphone D, Crumrine D, Komuves L, Elias PM, Feingold KR, Williams ML. Hormonal basis for the gender difference in epidermal barrier formation in the fetal rat. Acceleration by estrogen and delay by testosterone. J Clin Invest. 1996;97(11):2576–84. doi:10.1172/JCI118706.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Roskos KV, Guy RH. Assessment of skin barrier function using transepidermal water loss: effect of age. Pharm Res. 1989;6(11):949–53.

    CAS  PubMed  Google Scholar 

  87. Fenske NA, Lober CW. Structural and functional changes of normal aging skin. J Am Acad Dermatol. 1986;15(4 Pt 1):571–85.

    CAS  PubMed  Google Scholar 

  88. Jackson SM, Williams ML, Feingold KR, Elias PM. Pathobiology of the stratum corneum. West J Med. 1993;158(3):279–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Pierard-Franchimont C, Letawe C, Goffin V, Pierard GE. Skin water-holding capacity and transdermal estrogen therapy for menopause: a pilot study. Maturitas. 1995;22(2):151–4.

    CAS  PubMed  Google Scholar 

  90. Uzuka M, Nakajima K, Ohta S, Mori Y. The mechanism of estrogen-induced increase in hyaluronic acid biosynthesis, with special reference to estrogen receptor in the mouse skin. Biochim Biophys Acta. 1980;627(2):199–206.

    CAS  PubMed  Google Scholar 

  91. Sobel H, Hewlett MJ, Hrubant HE. Collagen and glycosaminoglycans in skin of aging mice. J Gerontol. 1970;25(2):102–4.

    CAS  PubMed  Google Scholar 

  92. Grosman N, Hvidberg E, Schou J. The effect of oestrogenic treatment on the acid mucopolysaccharide pattern in skin of mice. Acta Pharmacol Toxicol (Copenh). 1971;30(5):458–64.

    CAS  Google Scholar 

  93. Sudel KM, Venzke K, Mielke H, Breitenbach U, Mundt C, Jaspers S, Koop U, Sauermann K, Knussman-Hartig E, Moll I, Gercken G, Young AR, Stab F, Wenck H, Gallinat S. Novel aspects of intrinsic and extrinsic aging of human skin: beneficial effects of soy extract. Photochem Photobiol. 2005;81(3):581–7. doi:10.1562/2004-06-16-RA-202.

    PubMed  Google Scholar 

  94. Ohta H, Makita K, Kawashima T, Kinoshita S, Takenouchi M, Nozawa S. Relationship between dermato-physiological changes and hormonal status in pre-, peri-, and postmenopausal women. Maturitas. 1998;30(1):55–62.

    CAS  PubMed  Google Scholar 

  95. Dufour A, Candas V. Ageing and thermal responses during passive heat exposure: sweating and sensory aspects. Eur J Appl Physiol. 2007;100(1):19–26. doi:10.1007/s00421-007-0396-9.

    PubMed  Google Scholar 

  96. Foster KG, Ellis FP, Dore C, Exton-Smith AN, Weiner JS. Sweat responses in the aged. Age Ageing. 1976;5(2):91–101.

    CAS  PubMed  Google Scholar 

  97. Green JM, Bishop PA, Muir IH, Lomax RG. Gender differences in sweat lactate. Eur J Appl Physiol. 2000;82(3):230–5.

    CAS  PubMed  Google Scholar 

  98. Yosipovitch G, Reis J, Tur E, Sprecher E, Yarnitsky D, Boner G. Sweat secretion, stratum corneum hydration, small nerve function and pruritus in patients with advanced chronic renal failure. Br J Dermatol. 1995;133(4):561–4.

    CAS  PubMed  Google Scholar 

  99. Baulieu EE, Thomas G, Legrain S, Lahlou N, Roger M, Debuire B, Faucounau V, Girard L, Hervy MP, Latour F, Leaud MC, Mokrane A, Pitti-Ferrandi H, Trivalle C, de Lacharriere O, Nouveau S, Rakoto-Arison B, Souberbielle JC, Raison J, Le Bouc Y, Raynaud A, Girerd X, Forette F. Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: contribution of the DHEAge Study to a sociobiomedical issue. Proc Natl Acad Sci U S A. 2000;97(8):4279–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Makrantonaki E, Vogel K, Fimmel S, Oeff M, Seltmann H, Zouboulis CC. Interplay of IGF-I and 17beta-estradiol at age-specific levels in human sebocytes and fibroblasts in vitro. Exp Gerontol. 2008;43(10):939–46. doi:10.1016/j.exger.2008.07.005.

    CAS  PubMed  Google Scholar 

  101. Makrantonaki E, Zouboulis CC. Testosterone metabolism to 5alpha-dihydrotestosterone and synthesis of sebaceous lipids is regulated by the peroxisome proliferator-activated receptor ligand linoleic acid in human sebocytes. Br J Dermatol. 2007;156(3):428–32. doi:10.1111/j.1365-2133.2006.07671.x.

    CAS  PubMed  Google Scholar 

  102. Sator PG, Schmidt JB, Sator MO, Huber JC, Honigsmann H. The influence of hormone replacement therapy on skin ageing: a pilot study. Maturitas. 2001;39(1):43–55.

    CAS  PubMed  Google Scholar 

  103. Makrantonaki E, Adjaye J, Herwig R, Brink TC, Groth D, Hultschig C, Lehrach H, Zouboulis CC. Age-specific hormonal decline is accompanied by transcriptional changes in human sebocytes in vitro. Aging Cell. 2006;5(4):331–44. doi:10.1111/j.1474-9726.2006.00223.x.

    CAS  PubMed  Google Scholar 

  104. Pochi PE, Strauss JS, Downing DT. Age-related changes in sebaceous gland activity. J Invest Dermatol. 1979;73(1):108–11.

    CAS  PubMed  Google Scholar 

  105. Paus R, Cotsarelis G. The biology of hair follicles. N Engl J Med. 1999;341(7):491–7. doi:10.1056/NEJM199908123410706.

    CAS  PubMed  Google Scholar 

  106. Grove GL. Physiologic changes in older skin. Clin Geriatr Med. 1989;5(1):115–25.

    CAS  PubMed  Google Scholar 

  107. Holt DR, Kirk SJ, Regan MC, Hurson M, Lindblad WJ, Barbul A. Effect of age on wound healing in healthy human beings. Surgery. 1992;112(2):293–7; discussion 297–8.

    CAS  PubMed  Google Scholar 

  108. Gilliver SC, Ashworth JJ, Ashcroft GS. The hormonal regulation of cutaneous wound healing. Clin Dermatol. 2007;25(1):56–62. doi:10.1016/j.clindermatol.2006.09.012.

    PubMed  Google Scholar 

  109. Ashcroft GS, Horan MA, Ferguson MW. Aging is associated with reduced deposition of specific extracellular matrix components, an upregulation of angiogenesis, and an altered inflammatory response in a murine incisional wound healing model. J Invest Dermatol. 1997;108(4):430–7.

    CAS  PubMed  Google Scholar 

  110. Mills SJ, Ashworth JJ, Gilliver SC, Hardman MJ, Ashcroft GS. The sex steroid precursor DHEA accelerates cutaneous wound healing via the estrogen receptors. J Invest Dermatol. 2005;125(5):1053–62. doi:10.1111/j.0022-202X.2005.23926.x.

    CAS  PubMed  Google Scholar 

  111. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque JL, Agache PG. Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol. 1989;93(3):353–7.

    CAS  PubMed  Google Scholar 

  112. Shuster S, Black MM, McVitie E. The influence of age and sex on skin thickness, skin collagen and density. Br J Dermatol. 1975;93(6):639–43.

    CAS  PubMed  Google Scholar 

  113. de Rigal J, Escoffier C, Querleux B, Faivre B, Agache P, Leveque JL. Assessment of aging of the human skin by in vivo ultrasonic imaging. J Invest Dermatol. 1989;93(5):621–5.

    PubMed  Google Scholar 

  114. Boss GR, Seegmiller JE. Age-related physiological changes and their clinical significance. West J Med. 1981;135(6):434–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Maheux R, Naud F, Rioux M, Grenier R, Lemay A, Guy J, Langevin M. A randomized, double-blind, placebo-controlled study on the effect of conjugated estrogens on skin thickness. Am J Obstet Gynecol. 1994;170(2):642–9.

    CAS  PubMed  Google Scholar 

  116. Chen L, Dyson M, Rymer J, Bolton PA, Young SR. The use of high-frequency diagnostic ultrasound to investigate the effect of hormone replacement therapy on skin thickness. Skin Res Technol. 2001;7(2):95–7.

    CAS  PubMed  Google Scholar 

  117. Brincat M, Versi E, Moniz CF, Magos A, de Trafford J, Studd JW. Skin collagen changes in postmenopausal women receiving different regimens of estrogen therapy. Obstet Gynecol. 1987;70(1):123–7.

    CAS  PubMed  Google Scholar 

  118. Brincat MP, Baron YM, Galea R. Estrogens and the skin. Climacteric. 2005;8(2):110–23. doi:10.1080/13697130500118100.

    CAS  PubMed  Google Scholar 

  119. Verdier-Sevrain S, Bonte F, Gilchrest B. Biology of estrogens in skin: implications for skin aging. Exp Dermatol. 2006;15(2):83–94. doi:10.1111/j.1600-0625.2005.00377.x.

    CAS  PubMed  Google Scholar 

  120. Thompson Z, Maibach HI. Biological effects of estrogen on skin. In: Farage MA, Miller KW, Maibach HI, editors. Textbook of aging skin. Berlin: Springer; 2010. p. 361–7.

    Google Scholar 

  121. Henry F, Pierard-Franchimont C, Cauwenbergh G, Pierard GE. Age-related changes in facial skin contours and rheology. J Am Geriatr Soc. 1997;45(2):220–2.

    CAS  PubMed  Google Scholar 

  122. Creidi P, Faivre B, Agache P, Richard E, Haudiquet V, Sauvanet JP. Effect of a conjugated oestrogen (Premarin) cream on ageing facial skin. A comparative study with a placebo cream. Maturitas. 1994;19(3):211–23.

    CAS  PubMed  Google Scholar 

  123. Sumino H, Ichikawa S, Abe M, Endo Y, Ishikawa O, Kurabayashi M. Effects of aging, menopause, and hormone replacement therapy on forearm skin elasticity in women. J Am Geriatr Soc. 2004;52(6):945–9. doi:10.1111/j.1532-5415.2004.52262.x.

    PubMed  Google Scholar 

  124. Rittie L, Kang S, Voorhees JJ, Fisher GJ. Induction of collagen by estradiol: difference between sun-protected and photodamaged human skin in vivo. Arch Dermatol. 2008;144(9):1129–40. doi:10.1001/archderm.144.9.1129.

    CAS  PubMed  Google Scholar 

  125. Shuster S, Black MM, Bottoms E. Skin collagen and thickness in women with hirsuties. Br Med J. 1970;4(5738):772.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Ozasa H, Tominaga T, Nishimura T, Takeda T. Evidence for receptor-dependent response to dihydrotestosterone in cultured human fibroblasts. Endokrinologie. 1981;77(2):129–36.

    CAS  PubMed  Google Scholar 

  127. Dunn LB, Damesyn M, Moore AA, Reuben DB, Greendale GA. Does estrogen prevent skin aging? Results from the First National Health and Nutrition Examination Survey (NHANES I). Arch Dermatol. 1997;133(3):339–42.

    CAS  PubMed  Google Scholar 

  128. Fuchs KO, Solis O, Tapawan R, Paranjpe J. The effects of an estrogen and glycolic acid cream on the facial skin of postmenopausal women: a randomized histologic study. Cutis. 2003;71(6):481–8.

    PubMed  Google Scholar 

  129. Schmidt JB, Binder M, Demschik G, Bieglmayer C, Reiner A. Treatment of skin aging with topical estrogens. Int J Dermatol. 1996;35(9):669–74.

    CAS  PubMed  Google Scholar 

  130. Callens A, Vaillant L, Lecomte P, Berson M, Gall Y, Lorette G. Does hormonal skin aging exist? A study of the influence of different hormone therapy regimens on the skin of postmenopausal women using non-invasive measurement techniques. Dermatology. 1996;193(4):289–94.

    CAS  PubMed  Google Scholar 

  131. Rogers J, Harding C, Mayo A, Banks J, Rawlings A. Stratum corneum lipids: the effect of ageing and the seasons. Arch Dermatol Res. 1996;288(12):765–70.

    CAS  PubMed  Google Scholar 

  132. Sobel H, Cohen RA. Effect of estradion on hyaluronic acid in the skin of aging mice. Steroids. 1970;16(1):1–3.

    CAS  PubMed  Google Scholar 

  133. Jemec GB, Serup J. Scaling, dry skin and gender. A bioengineering study of dry skin. Acta Derm Venereol Suppl Stockh. 1992;177:26–8.

    CAS  PubMed  Google Scholar 

  134. Sato T, Sonoda T, Itami S, Takayasu S. Predominance of type I 5alpha-reductase in apocrine sweat glands of patients with excessive or abnormal odour derived from apocrine sweat (osmidrosis). Br J Dermatol. 1998;139(5):806–10.

    CAS  PubMed  Google Scholar 

  135. Kenney WL, Anderson RK. Responses of older and younger women to exercise in dry and humid heat without fluid replacement. Med Sci Sports Exerc. 1988;20(2):155–60.

    CAS  PubMed  Google Scholar 

  136. Akamatsu H, Zouboulis CC, Orfanos CE. Control of human sebocyte proliferation in vitro by testosterone and 5-alpha-dihydrotestosterone is dependent on the localization of the sebaceous glands. J Invest Dermatol. 1992;99(4):509–11.

    CAS  PubMed  Google Scholar 

  137. Roh M, Han M, Kim D, Chung K. Sebum output as a factor contributing to the size of facial pores. Br J Dermatol. 2006;155(5):890–4. doi:10.1111/j.1365-2133.2006.07465.x.

    CAS  PubMed  Google Scholar 

  138. Zouboulis CC. Acne and sebaceous gland function. Clin Dermatol. 2004;22(5):360–6. doi:10.1016/j.clindermatol.2004.03.004.

    PubMed  Google Scholar 

  139. Zouboulis CC, Boschnakow A. Chronological ageing and photoageing of the human sebaceous gland. Clin Exp Dermatol. 2001;26(7):600–7.

    CAS  PubMed  Google Scholar 

  140. Jahoda CA, Horne KA, Oliver RF. Induction of hair growth by implantation of cultured dermal papilla cells. Nature. 1984;311(5986):560–2.

    CAS  PubMed  Google Scholar 

  141. Asada Y, Sonoda T, Ojiro M, Kurata S, Sato T, Ezaki T, Takayasu S. 5 alpha-reductase type 2 is constitutively expressed in the dermal papilla and connective tissue sheath of the hair follicle in vivo but not during culture in vitro. J Clin Endocrinol Metab. 2001;86(6):2875–80.

    CAS  PubMed  Google Scholar 

  142. Rebora A. Pathogenesis of androgenetic alopecia. J Am Acad Dermatol. 2004;50(5):777–9. doi:10.1016/j.jaad.2003.11.073.

    PubMed  Google Scholar 

  143. Drake L, Hordinsky M, Fiedler V, Swinehart J, Unger WP, Cotterill PC, Thiboutot DM, Lowe N, Jacobson C, Whiting D, Stieglitz S, Kraus SJ, Griffin EI, Weiss D, Carrington P, Gencheff C, Cole GW, Pariser DM, Epstein ES, Tanaka W, Dallob A, Vandormael K, Geissler L, Waldstreicher J. The effects of finasteride on scalp skin and serum androgen levels in men with androgenetic alopecia. J Am Acad Dermatol. 1999;41(4):550–4.

    CAS  PubMed  Google Scholar 

  144. Inui S, Itami S. Molecular basis of androgenetic alopecia: from androgen to paracrine mediators through dermal papilla. J Dermatol Sci. 2011;61(1):1–6. doi:10.1016/j.jdermsci.2010.10.015.

    CAS  PubMed  Google Scholar 

  145. Hibino T, Nishiyama T. Role of TGF-beta2 in the human hair cycle. J Dermatol Sci. 2004;35(1):9–18. doi:10.1016/j.jdermsci.2003.12.003.

    CAS  PubMed  Google Scholar 

  146. Price VH. Androgenetic alopecia in women. J Investig Dermatol Symp Proc. 2003;8(1):24–7. doi:10.1046/j.1523-1747.2003.12168.x.

    PubMed  Google Scholar 

  147. Rosenfield RL. Hirsutism and the variable response of the pilosebaceous unit to androgen. J Investig Dermatol Symp Proc. 2005;10(3):205–8. doi:10.1111/j.1087-0024.2005.10106.x.

    CAS  PubMed  Google Scholar 

  148. Hoffmann R, Niiyama S, Huth A, Kissling S, Happle R. 17alpha-estradiol induces aromatase activity in intact human anagen hair follicles ex vivo. Exp Dermatol. 2002;11(4):376–80.

    CAS  PubMed  Google Scholar 

  149. Oh HS, Smart RC. An estrogen receptor pathway regulates the telogen-anagen hair follicle transition and influences epidermal cell proliferation. Proc Natl Acad Sci U S A. 1996;93(22):12525–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Conrad F, Ohnemus U, Bodo E, Biro T, Tychsen B, Gerstmayer B, Bosio A, Schmidt-Rose T, Altgilbers S, Bettermann A, Saathoff M, Meyer W, Paus R. Substantial sex-dependent differences in the response of human scalp hair follicles to estrogen stimulation in vitro advocate gender-tailored management of female versus male pattern balding. J Investig Dermatol Symp Proc. 2005;10(3):243–6. doi:10.1111/j.1087-0024.2005.10115.x.

    CAS  PubMed  Google Scholar 

  151. Ashcroft GS, Greenwell-Wild T, Horan MA, Wahl SM, Ferguson MW. Topical estrogen accelerates cutaneous wound healing in aged humans associated with an altered inflammatory response. Am J Pathol. 1999;155(4):1137–46. doi:10.1016/S0002-9440(10)65217-0.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Fimmel S, Zouboulis CC. Influence of physiological androgen levels on wound healing and immune status in men. Aging Male. 2005;8(3–4):166–74. doi:10.1080/13685530500233847.

    CAS  PubMed  Google Scholar 

  153. Taylor RJ, Taylor AD, Smyth JV. Using an artificial neural network to predict healing times and risk factors for venous leg ulcers. J Wound Care. 2002;11(3):101–5.

    CAS  PubMed  Google Scholar 

  154. Schroder J, Kahlke V, Staubach KH, Zabel P, Stuber F. Gender differences in human sepsis. Arch Surg. 1998;133(11):1200–5.

    CAS  PubMed  Google Scholar 

  155. Ashcroft GS, Mills SJ. Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest. 2002;110(5):615–24. doi:10.1172/jci15704.

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Gilliver SC, Ruckshanthi JP, Atkinson SJ, Ashcroft GS. Androgens influence expression of matrix proteins and proteolytic factors during cutaneous wound healing. Lab Invest. 2007;87(9):871–81. doi:10.1038/labinvest.3700627.

    CAS  PubMed  Google Scholar 

  157. Gilliver SC, Ruckshanthi JP, Hardman MJ, Zeef LA, Ashcroft GS. 5alpha-dihydrotestosterone (DHT) retards wound closure by inhibiting re-epithelialization. J Pathol. 2009;217(1):73–82. doi:10.1002/path.2444.

    CAS  PubMed  Google Scholar 

  158. Hardman MJ, Ashcroft GS. Estrogen, not intrinsic aging, is the major regulator of delayed human wound healing in the elderly. Genome Biol. 2008;9(5):R80. doi:10.1186/gb-2008-9-5-r80.

    PubMed Central  PubMed  Google Scholar 

  159. Ashcroft GS, Dodsworth J, van Boxtel E, Tarnuzzer RW, Horan MA, Schultz GS, Ferguson MW. Estrogen accelerates cutaneous wound healing associated with an increase in TGF-beta1 levels. Nat Med. 1997;3(11):1209–15.

    CAS  PubMed  Google Scholar 

  160. Morales DE, McGowan KA, Grant DS, Maheshwari S, Bhartiya D, Cid MC, Kleinman HK, Schnaper HW. Estrogen promotes angiogenic activity in human umbilical vein endothelial cells in vitro and in a murine model. Circulation. 1995;91(3):755–63.

    CAS  PubMed  Google Scholar 

  161. Routley CE, Ashcroft GS. Effect of estrogen and progesterone on macrophage activation during wound healing. Wound Repair Regen. 2009;17(1):42–50. doi:10.1111/j.1524-475X.2008.00440.x.

    PubMed  Google Scholar 

  162. Ashcroft GS, Mills SJ, Lei K, Gibbons L, Jeong MJ, Taniguchi M, Burow M, Horan MA, Wahl SM, Nakayama T. Estrogen modulates cutaneous wound healing by downregulating macrophage migration inhibitory factor. J Clin Invest. 2003;111(9):1309–18. doi:10.1172/JCI16288.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. Hardman MJ, Waite A, Zeef L, Burow M, Nakayama T, Ashcroft GS. Macrophage migration inhibitory factor: a central regulator of wound healing. Am J Pathol. 2005;167(6):1561–74. doi:10.1016/S0002-9440(10)61241-2.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Campbell L, Emmerson E, Davies F, Gilliver SC, Krust A, Chambon P, Ashcroft GS, Hardman MJ. Estrogen promotes cutaneous wound healing via estrogen receptor beta independent of its antiinflammatory activities. J Exp Med. 2010;207(9):1825–33. doi:10.1084/jem.20100500.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miranda A. Farage MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farage, M.A., Miller, K.W., Zouboulis, C.C., Piérard, G.E., Maibach, H.I. (2015). Gender Differences in Production and Circulating Levels of Sex Hormones and Their Impact on Aging Skin. In: Farage, M., Miller, K., Fugate Woods, N., Maibach, H. (eds) Skin, Mucosa and Menopause. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44080-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44080-3_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44079-7

  • Online ISBN: 978-3-662-44080-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics