The Phytophthora sojae Genome Sequence: Foundation for a Revolution

  • Brett M. Tyler
  • Mark Gijzen


Phytophthora sojae is a soil-borne microorganism and a plant pathogen that causes stem and root rot of soybean. P. sojae is one of the ~120 species of plant pathogenic eukaryotes within the genus Phytophthora. These organisms are oomycetes, fungus-like organisms in the kingdom Stramenopila. Together with members of related genera such as Pythium, Peronospora, and Albugo, these organisms cause highly destructive diseases of plants of importance to agriculture, horticulture, forestry, and natural ecosystems. The draft genome sequence of P. sojae, together with that of the forest pathogen P. ramorum, was completed in 2004 and published in 2006. These were the first oomycete genomes sequenced, and have provided a resource of information that has revolutionized our understanding of oomycete infection mechanisms, and propelled oomycete research to the forefront of studies of molecular plant-microbe interactions. Highlights of insights that have emerged from the genome sequence of P. sojae and other oomycetes include: a bipartite genome organization whereby rapidly evolving genes involved in infection are located in dynamic, transposon-rich regions while highly conserved housekeeping genes are located in stable gene-rich regions; two classes of effector proteins that can cross into the cytoplasm of host plant cells to suppress immunity; the role of epigenetic variation in oomycete pathogen adaptation; and the role of transkingdom horizontal gene transfer in introducing key virulence factors into the genomes of plant pathogenic oomycetes.


Quantitative Trait Locus Bacterial Artificial Chromosome Clone Downy Mildew Tandem Array Avirulence Gene 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Jeannine Cropley for manuscript assistance. BMT was supported by grant 2011-68004-30104 from the Agriculture and Food Research Institute of the National Institute of Food and Agriculture of the USDA; MG was supported by Agriculture and Agri-Food Canada GRDI program.


  1. Ah-Fong AM, Bormann-Chung CA, Judelson HS (2008) Optimization of transgene-mediated silencing in Phytophthora infestans and its association with small-interfering RNAs. Fungal Genet Biol 45(8):1197–1205. doi: 10.1016/j.fgb.2008.05.009 PubMedCrossRefGoogle Scholar
  2. Arentshorst M, Ram AF, Meyer V (2012) Using non-homologous end-joining-deficient strains for functional gene analyses in filamentous fungi. Methods Mol Biol 835:133–150. doi:10.1007/978-1-61779-501-5_9 Google Scholar
  3. Armstrong MR, Whisson SC, Pritchard L, Bos JI, Venter E, Avrova AO, Rehmany AP, Bohme U, Brooks K, Cherevach I, Hamlin N, White B, Fraser A, Lord A, Quail MA, Churcher C, Hall N, Berriman M, Huang S, Kamoun S, Beynon JL, Birch PR (2005) An ancestral oomycete locus contains late blight avirulence gene Avr3a, encoding a protein that is recognized in the host cytoplasm. Proc Natl Acad Sci USA 102(21):7766–7771PubMedCentralPubMedCrossRefGoogle Scholar
  4. Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer ET, Li W, Miller JA, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Srinivasamoorthy G, Stoeckert CJ, Jr., Thibodeau R, Treatman C, Wang H (2010) EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res 38 (Database issue):D415–419. doi: 10.1093/nar/gkp941
  5. Bailey BA, Jennings JC, Anderson JD (1997) The 24-kDa protein from Fusarium oxysporum f.sp. erythroxyli: occurrence in related fungi and the effect of growth medium on its production. Can J Microbiol 43(1):45–55PubMedCrossRefGoogle Scholar
  6. Baxter L, Tripathy S, Ishaque N, Boot N, Cabral A, Kemen E, Thines M, Ah-Fong A, Anderson R, Badejoko W, Bittner-Eddy P, Boore JL, Chibucos MC, Coates M, Dehal P, Delehaunty K, Dong S, Downton P, Dumas B, Fabro G, Fronick C, Fuerstenberg SI, Fulton L, Gaulin E, Govers F, Hughes L, Humphray S, Jiang RHY, Judelson HS, Kamoun S, Kyung K, Meijer H, Minx P, Morris P, Nelson J, Phuntumart V, Qutob D, Rehmany A, Rougon A, Ryden P, Torto-Alalibo T, Studholme D, Wang Y, Win J, Wood J, Clifton SW, Rogers J, Ackerveken GVd, Jones JDG, McDowell JM, Beynon J, Tyler BM (2010) Signatures of adaptation to obligate biotrophy in the Hyaloperonospora arabidopsidis genome. Science 330(6010):1549–1551Google Scholar
  7. Blair JE, Coffey MD, Park SY, Geiser DM, Kang S (2008) A multi-locus phylogeny for Phytophthora utilizing markers derived from complete genome sequences. Fungal Genet Biol 45(3):266–277. doi: 10.1016/j.fgb.2007.10.010 PubMedCrossRefGoogle Scholar
  8. Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I, Taylor RM, Zhendong T, Engelhardt S, Vetukuri RR, Harrower B, Dixelius C, Bryan G, Sadanandom A, Whisson SC, Kamoun S, Birch PR (2010) Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. Proc Natl Acad Sci USA 107 (21):9909–9914. doi: 10.1073/pnas.0914408107
  9. Bos JIB, Kanneganti T-D, Young C, Cakir C, Huitema E, Win J, Armstrong M, Birch PRJ, Kamoun S (2006) The C-terminal half of Phytophthora infestans RXLR effector AVR3a is sufficient to trigger R3a-mediated hypersensitivity and suppress INF1-induced cell death in Nicotiana benthamiana. Plant J 48:165–176PubMedCrossRefGoogle Scholar
  10. Buzzell RI, Anderson TR (1982) Plant loss response of soybean cultivars to Phytophthora megasperma f. sp. glycinea under field conditions. Plant Dis 66(12):1146–1148CrossRefGoogle Scholar
  11. Cabral A, Oome S, Sander N, Kufner I, Nurnberger T, Van den Ackerveken G (2012) Nontoxic Nep1-like proteins of the downy mildew pathogen Hyaloperonospora arabidopsidis: repression of necrosis-inducing activity by a surface-exposed region. Mol Plant-Microbe Interact 25(5):697–708PubMedCrossRefGoogle Scholar
  12. Cabral A, Stassen JH, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G (2011) Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors. PLoS ONE 6 (5):e19328. doi: 10.1371/journal.pone.0019328, PONE-D-10-06310
  13. Chamnanpunt J, Shan WX, Tyler BM (2001) High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae. Proc Natl Acad Sci USA 98(25):14530–14535PubMedCentralPubMedCrossRefGoogle Scholar
  14. Chen XR, Wang YC (2012) Advances on the methods used for the functional analysis of oomycete genes. J Agric Biotechnol 20(5):568–575Google Scholar
  15. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi: 10.1126/science.1231143 PubMedCentralPubMedCrossRefGoogle Scholar
  16. Cooke DEL, Drenth A, Duncan JM, Wagels G, Brasier CM (2000) A molecular phylogeny of Phytophthora and related oomycetes. Fungal Genet Biol 30(1):17–32PubMedCrossRefGoogle Scholar
  17. de la Luz Gutierrez-Nava M, Aukerman MJ, Sakai H, Tingey SV, Williams RW (2008) Artificial trans-acting siRNAs confer consistent and effective gene silencing. Plant Physiol 147(2):543–551. doi: 10.1104/pp.108.118307
  18. Deschamps P, Moreira D (2012) Reevaluating the green contribution to diatom genomes. Genome Biol Evol 4(7):683–688. doi: 10.1093/gbe/evs053 PubMedCrossRefGoogle Scholar
  19. Dicarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41(7):4336–4343. doi: 10.1093/nar/gkt135 PubMedCentralPubMedCrossRefGoogle Scholar
  20. Dong S, Kong G, Qutob D, Yu X, Tang J, Kang J, Dai T, Wang H, Gijzen M, Wang Y (2012) The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Mol Plant-Microbe Interact 25(7):896–909PubMedCrossRefGoogle Scholar
  21. Dong S, Yin W, Kong G, Yang X, Qutob D, Chen Q, Kale SD, Sui Y, Zhang Z, Dou D, Zheng X, Gijzen M, Tyler BM, Wang Y (2011a) Phytophthora sojae avirulence effector Avr3b is a secreted NADH and ADP-ribose pyrophosphorylase that modulates plant immunity. PLoS Pathog 7(11):e1002353PubMedCentralPubMedCrossRefGoogle Scholar
  22. Dong S, Yu D, Cui L, Qutob D, Tedman-Jones J, Kale SD, Tyler BM, Wang Y, Gijzen M (2011b) Sequence variants of the Phytophthora sojae RXLR effector Avr3a/5 are differentially recognized by Rps3a and Rps5 in soybean. PLoS ONE 6(7):e20172. doi: 10.1371/journal.pone.0020172 PubMedCentralPubMedCrossRefGoogle Scholar
  23. Dong SM, Qutob D, Tedman-Jones J, Kuflu K, Wang YC, Tyler BM, Gijzen M (2009) The Phytophthora sojae avirulence locus Avr3c encodes a multi-copy RXLR effector with sequence polymorphisms among pathogen strains. PLoS ONE 4(5). doi: 10.1371/journal.pone.0005556
  24. Dorrance A, Grünwald NJ (2009) Phytophthora sojae: diversity among and within populations. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions, and research tools. Wiley, pp 197–212. doi: 10.1002/9780470475898.ch10
  25. Dorrance AE, McClure SA, St. Martin SK (2003) Effect of partial resistance on phytophthora stem rot incidence and yield of soybean in Ohio. Plant Dis 87(3):308–312Google Scholar
  26. Dorrance AE, Robertson AE, Cianzo S, Giesler LJ, Grau CR, Draper MA, Tenuta AU, Anderson TR (2009) Integrated management strategies for Phytophthora sojae combining host resistance and seed treatments. Plant Dis 93(9):875–882CrossRefGoogle Scholar
  27. Dou D, Kale SD, Liu T, Tang Q, Wang X, Arredondo FD, Basnayake S, Whisson S, Drenth A, Maclean D, Tyler BM (2010) Different domains of Phytophthora sojae effector Avr4/6 are recognized by soybean resistance genes Rps4 and Rps6. Mol Plant Microbe Interact 23(4):425–435PubMedGoogle Scholar
  28. Dou D, Kale SD, Wang X, Chen Y, Wang Q, Wang X, Jiang RHY, Arredondo FD, Anderson R, Thakur P, McDowell J, Wang Y, Tyler BM (2008a) Carboxy-terminal motifs common to many oomycete RXLR effectors are required for avirulence and suppression of BAX-mediated programmed cell death by Phytophthora sojae effector Avr1b. Plant Cell 20(4):1118–1133PubMedCentralPubMedCrossRefGoogle Scholar
  29. Dou D, Kale SD, Wang X, Jiang RHY, Bruce NA, Arredondo FD, Zhang X, Tyler BM (2008b) RXLR-mediated entry of Phytophthora sojae effector Avr1b into soybean cells does not require pathogen-encoded machinery. Plant Cell 20(7):1930–1947PubMedCentralPubMedCrossRefGoogle Scholar
  30. Dreyer AK, Cathomen T (2012) Zinc-finger nucleases-based genome engineering to generate isogenic human cell lines. Methods Mol Biol 813:145–156. doi:10.1007/978-1-61779-412-4_8 Google Scholar
  31. Enkerli K, Hahn MG, Mims CW (1997) Ultrastructure of compatible and incompatible interactions of soybean roots infected with the plant pathogenic oomycete Phytophthora sojae. Can J Bot 75(9):1494–1508Google Scholar
  32. Erwin DC, Ribeiro OK (1996) Phytophthora diseases worldwide. The American Phytopathological Society, St. PaulGoogle Scholar
  33. Fabro G, Steinbrenner J, Coates M, Ishaque N, Baxter L, Studholme DJ, Körner E, Allen RL, Piquerez SJM, Rougon-Cardoso A, Greenshields D, Lei R, Badel JL, Caillaud M-C, van den Ackerveken G, Parker JE, Beynon J, Jones JDG (2011) Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. PLoS Pathog 7(11):e1002348PubMedCentralPubMedCrossRefGoogle Scholar
  34. Faedda R, Cacciola SO, Pane A, Martini P, Odasso M, Magnano di San Lio G (2013) First report of Phytophthora taxon niederhauserii causing root and stem rot of mimosa in Italy. Plant Dis 97(5):688Google Scholar
  35. Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grunwald NJ, Carrington JC (2013) Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS ONE 8(10):e77181. doi: 10.1371/journal.pone.0077181 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Fan A-Y, Wang X-M, Fang X-P, Wu X-F, Zhu Z-D (2009) Molecular identification of Phytophthora resistance gene in soybean cultivar Yudou 25. Acta Agron Sinica 35(10):1844Google Scholar
  37. Fellbrich G, Romanski A, Varet A, Blume B, Brunner F, Engelhardt S, Felix G, Kemmerling B, Krzymowska M, Nurnberger T (2002) NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J 32(3):375–390PubMedCrossRefGoogle Scholar
  38. Förster H, Coffey MD (1990) Mating behavior of Phytophthora parasitica: Evidence for sexual recombination in oospores using DNA restriction fragment length polymorphisms as genetic markers. Exp Mycol 14(4):351–359. doi:
  39. Förster H, Tyler BM, Coffey MD (1994) Phytophthora sojae races have arisen by clonal evolution and by rare outcrosses. Mol Plant-Microbe Interact 7(6):780–791CrossRefGoogle Scholar
  40. Francis DM, Gehlen MF, St Clair DA (1994) Genetic variation in homothallic and hyphal swelling isolates of Pythium ultimum var. ultimum and P. ultimum var. sporangiferum. Mol Plant-Microbe Interact 7(6):766–775Google Scholar
  41. Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. doi: 10.1016/j.tibtech.2013.04.004 PubMedCentralPubMedGoogle Scholar
  42. Gao H, Bhattacharyya MK (2008) The soybean-Phytophthora resistance locus Rps1-k encompasses coiled coil-nucleotide binding-leucine rich repeat-like genes and repetitive sequences. BMC Plant Biol 8(1):29. doi: 10.1186/1471-2229-8-29
  43. Gijzen M (2009) Runaway repeats force expansion of the Phytophthora infestans genome. Genome Biol 10(10):241. doi: 10.1186/gb-2009-10-10-241 PubMedCentralPubMedCrossRefGoogle Scholar
  44. Gijzen M, Forster H, Coffey MD, Tyler BM (1996) Cosegregation of Avr4 and Avr6 in Phytophthora sojae. Can J Bot 74(5):800–802CrossRefGoogle Scholar
  45. Gijzen M, Nurnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67(16):1800–1807. doi: 10.1016/j.phytochem.2005.12.008, S0031-9422(05)00675-8
  46. Gijzen M, Qutob D (2009) Phytophthora sojae and soybean. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions, and research tools. Wiley, pp 303–329. doi: 10.1002/9780470475898.ch15
  47. Gilroy EM, Breen S, Whisson SC, Squires J, Hein I, Kaczmarek M, Turnbull D, Boevink PC, Lokossou A, Cano LM, Morales J, Avrova AO, Pritchard L, Randall E, Lees A, Govers F, van West P, Kamoun S, Vleeshouwers VG, Cooke DE, Birch PR (2011) Presence/absence, differential expression and sequence polymorphisms between PiAVR2 and PiAVR2-like in Phytophthora infestans determine virulence on R2 plants. New Phytol 191(3):763–776PubMedCrossRefGoogle Scholar
  48. Graham MA, Marek LF, Shoemaker RC (2002) Organization, expression and evolution of a disease resistance gene cluster in soybean. Genetics 162(4):1961–1977PubMedCentralPubMedGoogle Scholar
  49. Haas BJ, Kamoun S, Zody MC, Jiang RH, Handsaker RE, Cano LM, Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T, Bozkurt TO, Ah-Fong AM, Alvarado L, Anderson VL, Armstrong MR, Avrova A, Baxter L, Beynon J, Boevink PC, Bollmann SR, Bos JI, Bulone V, Cai G, Cakir C, Carrington JC, Chawner M, Conti L, Costanzo S, Ewan R, Fahlgren N, Fischbach MA, Fugelstad J, Gilroy EM, Gnerre S, Green PJ, Grenville-Briggs LJ, Griffith J, Grunwald NJ, Horn K, Horner NR, Hu CH, Huitema E, Jeong DH, Jones AM, Jones JD, Jones RW, Karlsson EK, Kunjeti SG, Lamour K, Liu Z, Ma L, Maclean D, Chibucos MC, McDonald H, McWalters J, Meijer HJ, Morgan W, Morris PF, Munro CA, O’Neill K, Ospina-Giraldo M, Pinzon A, Pritchard L, Ramsahoye B, Ren Q, Restrepo S, Roy S, Sadanandom A, Savidor A, Schornack S, Schwartz DC, Schumann UD, Schwessinger B, Seyer L, Sharpe T, Silvar C, Song J, Studholme DJ, Sykes S, Thines M, van de Vondervoort PJ, Phuntumart V, Wawra S, Weide R, Win J, Young C, Zhou S, Fry W, Meyers BC, van West P, Ristaino J, Govers F, Birch PR, Whisson SC, Judelson HS, Nusbaum C (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461(7262):393–398. doi: 10.1038/nature08358
  50. Halfmann R, Jarosz DF, Jones SK, Chang A, Lancaster AK, Lindquist S (2012) Prions are a common mechanism for phenotypic inheritance in wild yeasts. Nature 482(7385):363–368PubMedCentralPubMedCrossRefGoogle Scholar
  51. Han Y, Teng W, Yu K, Poysa V, Anderson T, Qiu L, Lightfoot DA, Li W (2008) Mapping QTL tolerance to Phytophthora root rot in soybean using microsatellite and RAPD/SCAR derived markers. Euphytica 162(2):231–239. doi: 10.1007/s10681-007-9558-4 CrossRefGoogle Scholar
  52. Harper JT, Waanders E, Keeling PJ (2005) On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. Int J Syst Evol Microbiol 55(Pt 1):487–496PubMedCrossRefGoogle Scholar
  53. Hildebrand AA (1959) A root and stalk rot of soybeans caused by Phytophthora megasperma Drechsler var. sojae var. nov. Can J Bot 37:927–957CrossRefGoogle Scholar
  54. Jiang RH, Tyler BM, Govers F (2006a) Comparative analysis of Phytophthora genes encoding secreted proteins reveals conserved synteny and lineage-specific gene duplications and deletions. Mol Plant-Microbe Interact 19(12):1311–1321PubMedCrossRefGoogle Scholar
  55. Jiang RH, Tyler BM, Whisson SC, Hardham AR, Govers F (2006b) Ancient origin of elicitin gene clusters in Phytophthora genomes. Mol Biol Evol 23(2):338–351PubMedCrossRefGoogle Scholar
  56. Jiang RHY, de Bruijn I, Haas BJ, Belmonte R, Löbach L, Christie J, van den Ackerveken G, Bottin A, Dumas B, Fan L, Gaulin E, Govers F, Grenville-Briggs LJ, Horner NR, Levin JZ, Mammella M, Meijer HJG, Morris P, Nusbaum C, Oome S, Rooyen Dv, Saraiva M, Secombes CJ, Seidl MF, Snel B, Stassen J, Sykes S, Tripathy S, van den Berg H, Vega-Arreguin JC, Wawra S, Young S, Zeng Q, Dieguez-Uribeondo J, Russ C, Tyler BM, van West P (2013) Distinctive expansion of potential virulence genes in the genome of the oomycete fish pathogen Saprolegnia parasitica. PLoS Genet 9(6):e1003272Google Scholar
  57. Jiang RHY, Tripathy S, Govers F, Tyler BM (2008) RXLR effector reservoir in two Phytophthora species is dominated by a single rapidly evolving super-family with more than 700 members. Proc Natl Acad Sci USA 105(12):4874–4879PubMedCentralPubMedCrossRefGoogle Scholar
  58. Jiang RHY, Tyler BM (2012) Mechanisms and evolution of virulence in oomycetes. Ann Rev Phytopath 50:295–318CrossRefGoogle Scholar
  59. Jones JD, Dangl JL (2006) The plant immune system. Nature 444(7117):323–329PubMedCrossRefGoogle Scholar
  60. Jones JP (1969) Reaction of Lupinus species to Phytophthora megasperma var. sojae. Plant Dis Report 53:907–909Google Scholar
  61. Jones JP, Johnson HW (1969) Lupine, a new host for Phytophthora megasperma var. sojae. Phytopathology 59:504–507Google Scholar
  62. Judelson H, Tyler BM, Michelmore RW (1991) Transformation of the oömycete pathogen, Phytophthora infestans. Mol Plant-Microbe Interact 4(6):602–607PubMedCrossRefGoogle Scholar
  63. Judelson HS (2009) Sexual reproduction in oomycetes: biology, diversity, and contributions to fitness. In: Lamour K, Kamoun S (eds) Oomycete genetics and genomics: diversity, interactions, and research tools. Wiley, pp 121–138. doi: 10.1002/9780470475898.ch6
  64. Judelson HS, Coffey MD, Arredondo F, Tyler BM (1993) Transformation of the oömycete pathogen Phytophthora megasperma f.sp. glycinea occurs by DNA integration into single or multiple chromosomes. Curr Genet 23:211–218PubMedCrossRefGoogle Scholar
  65. Judelson HS, Tani S (2007) Transgene-induced silencing of the zoosporogenesis-specific NIFC gene cluster of Phytophthora infestans involves chromatin alterations. Eukaryot Cell 6(7):1200–1209PubMedCentralPubMedCrossRefGoogle Scholar
  66. Kale SD, Gu B, Capelluto DGS, Dou D-L, Feldman E, Rumore A, Arredondo FD, Hanlon R, Fudal I, Rouxel T, Lawrence CB, Shan W-X, Tyler BM (2010) External lipid PI-3-P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142(2):284–295PubMedCrossRefGoogle Scholar
  67. Kale SD, Tyler BM (2011) Assaying effector function in planta using double-barreled particle bombardment. In: McDowell JM (ed) Methods in molecular biology. The plant immune response. Humana, Totowa, pp 153–172Google Scholar
  68. Kasuga T, Kozanitas M, Bui M, Huberli D, Rizzo DM, Garbelotto M (2012) Phenotypic diversification is associated with host-induced transposon derepression in the sudden oak death pathogen Phytophthora ramorum. PLoS ONE 7(4):e34728PubMedCentralPubMedCrossRefGoogle Scholar
  69. Kaufmann MJ, Gerdemann JW (1958) Root and stem rot of soybeans caused by Phytophthora sojae n. sp. Phytopathology 48:201–208Google Scholar
  70. Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond B Biol Sci 365(1541):729–748. doi: 10.1098/rstb.2009.0103 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Keen NT (1975) Specific elicitors of plant phytoalexin production: detenninants of race specificity in pathogens? Science 187(4171):74–75PubMedCrossRefGoogle Scholar
  72. Kelley BS, Lee SJ, Damasceno CM, Chakravarthy S, Kim BD, Martin GB, Rose JK (2010) A secreted effector protein (SNE1) from Phytophthora infestans is a broadly acting suppressor of programmed cell death. Plant J 62(3):357–366PubMedCrossRefGoogle Scholar
  73. Kim S, Kim JS (2011) Targeted genome engineering via zinc finger nucleases. Plant Biotechnol Rep 5(1):9–17. doi: 10.1007/s11816-010-0161-0 PubMedCentralPubMedCrossRefGoogle Scholar
  74. Kroon L, Henk B, Decock A, Govers F (2012) The Phytophthora genus anno 2012. Phytopathology 102(4):348–364. doi: 10.1094/PHYTO-01-11-0025 PubMedCrossRefGoogle Scholar
  75. Lamour KH, Mudge J, Gobena D, Hurtado-Gonzales OP, Schmutz J, Kuo A, Miller NA, Rice BJ, Raffaele S, Cano LM, Bharti AK, Donahoo RS, Finley S, Huitema E, Hulvey J, Platt D, Salamov A, Savidor A, Sharma R, Stam R, Storey D, Thines M, Win J, Haas BJ, Dinwiddie DL, Jenkins J, Knight JR, Affourtit JP, Han CS, Chertkov O, Lindquist EA, Detter C, Grigoriev IV, Kamoun S, Kingsmore SF (2012) Genome sequencing and mapping reveal loss of heterozygosity as a mechanism for rapid adaptation in the vegetable pathogen Phytophthora capsici. Mol Plant-Microbe Interact 25(10):1350–1360PubMedCentralPubMedCrossRefGoogle Scholar
  76. Lee S, Mian MA, McHale LK, Wang H, Wijeratne AJ, Sneller CH, Dorrance AE (2013) Novel quantitative trait loci for partial resistance to Phytophthora sojae in soybean PI 398841. Theor Appl Genet. doi: 10.1007/s00122-013-2040-x PubMedCentralGoogle Scholar
  77. Li A, Wang Y, Tao K, Dong S, Huang Q, Dai T, Zheng X (2010a) PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. Mol Plant Microbe Interact 23(8):1022–1031. doi: 10.1094/MPMI-23-8-1022 PubMedGoogle Scholar
  78. Li X, Han Y, Teng W, Zhang S, Yu K, Poysa V, Anderson T, Ding J, Li W (2010b) Pyramided QTL underlying tolerance to Phytophthora root rot in mega-environments from soybean cultivars ‘Conrad’ and ‘Hefeng 25’. Theor Appl Genet 121(4):651–658. doi: 10.1007/s00122-010-1337-2 PubMedCrossRefGoogle Scholar
  79. Li D, Zhao Z, Huang Y, Lu Z, Yao M, Hao Y, Zhai C, Wang Y (2013) PsVPS1, a dynamin-related protein, is involved in cyst germination and soybean infection of Phytophthora sojae. PLoS ONE 8(3):e58623. doi: 10.1371/journal.pone.0058623 PubMedCentralPubMedCrossRefGoogle Scholar
  80. Li S, Nosenko T, Hackett JD, Bhattacharya D (2006) Phylogenomic analysis identifies red algal genes of endosymbiotic origin in the chromalveolates. Mol Biol Evol 23(3):663–674PubMedCrossRefGoogle Scholar
  81. Lin F, Zhao M, Ping J, Johnson A, Zhang B, Abney TS, Hughes TJ, Ma J (2013) Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor Appl Genet 126(8):2177–2185. doi: 10.1007/s00122-013-2127-4 PubMedCrossRefGoogle Scholar
  82. Liu TL, Ye WW, Ru YY, Yang XY, Gu B, Tao K, Lu S, Dong SM, Zheng XB, Shan WX, Wang YC, Dou DL (2011) Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses. Plant Phys 155(1):490–501CrossRefGoogle Scholar
  83. Lu S, Chen L, Tao K, Sun N, Wu Y, Lu X, Wang Y, Dou D (2013) Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species are important for infection. Mol Plant. doi: 10.1093/mp/sst047 Google Scholar
  84. MacGregor T, Bhattacharyya M, Tyler BM, Bhat R, Schmitthenner AF, Gijzen M (2002) Genetic and physical mapping of Avr1a in Phytophthora sojae. Genetics 160:949–959PubMedCentralPubMedGoogle Scholar
  85. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi: 10.1126/science.1232033 PubMedCentralPubMedCrossRefGoogle Scholar
  86. Mao Y, Tyler BM (1996) The Phytophthora sojae genome contains tandem repeat sequences which vary from strain to strain. Fungal Genet Biol 20(1):43–51PubMedCrossRefGoogle Scholar
  87. Mattinen L, Tshuikina M, Mae A, Pirhonen M (2004) Identification and characterization of Nip, necrosis-inducing virulence protein of Erwinia carotovora subsp. carotovora. Mol Plant Microbe Interact 17(12):1366–1375PubMedGoogle Scholar
  88. May KJ, Whisson SC, Zwart RS, Searle IR, Irwin JAG, Maclean DJ, Carroll BJ, Drenth A (2002) Inheritance and mapping of eleven avirulence genes in Phytophthora sojae. Fungal Genet Biol 37:1–12PubMedCrossRefGoogle Scholar
  89. McLeod A, Fry BA, Zuluaga AP, Myers KL, Fry WE (2008) Toward improvements of oomycete transformation protocols. J Eukaryot Microbiol 55(2):103–109. doi: 10.1111/j.1550-7408.2008.00304.x PubMedCrossRefGoogle Scholar
  90. Mideros S, Nita M, Dorrance AE (2007) Characterization of components of partial resistance, Rps2, and root resistance to Phytophthora sojae in soybean. Phytopathology 97(5):655–662PubMedCrossRefGoogle Scholar
  91. Morris PF, Ward EWB (1992) Chemoattraction of zoospores of the soybean pathogen, P. sojae, by isoflavones. Phys Mol Plant Pathol 40:17–22CrossRefGoogle Scholar
  92. Morris PF, Schlosser LR, Onasch KD, Wittenschlaeger T, Austin R, Provart N (2009) Multiple horizontal gene transfer events and domain fusions have created novel regulatory and metabolic networks in the oomycete genome. PLoS ONE 4(7):e6133. doi: 10.1371/journal.pone.0006133 PubMedCentralPubMedCrossRefGoogle Scholar
  93. Moy P, Qutob D, Chapman BP, Atkinson I, Gijzen M (2004) Patterns of gene expression upon infection of soybean plants by Phytophthora sojae. Mol Plant-Microbe Interact 17(10):1051–1062PubMedCrossRefGoogle Scholar
  94. Na R, Yu D, Qutob D, Zhao J, Gijzen M (2013) Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d. Mol Plant Microbe Interact 26(8):969–976. doi: 10.1094/MPMI-02-13-0036-R PubMedGoogle Scholar
  95. Na R, Yu D, Chapman BP, Zhang Y, Kuflu K, Austin R, Qutob D, Zhao J, Wang Y, Gijzen M (2014) Genome re-sequencing and functional analysis places the Phytophthora sojae avirulence genes Avr1c and Avr1a in a tandem repeat at a single locus. PLoS ONE 9(2):e89738Google Scholar
  96. Nguyen VT, Vuong TD, VanToai T, Lee JD, Wu X, Rouf Mian MA, Dorrance AE, Shannon JG, Nguyen HT (2012) Mapping of quantitative trait loci associated with resistance to Phytophthora sojae and flooding tolerance in soybean. Crop Sci 52(6):2481–2493Google Scholar
  97. Nunes CC, Dean RA (2012) Host-induced gene silencing: a tool for understanding fungal host interaction and for developing novel disease control strategies. Mol Plant Pathol 13(5):519–529. doi: 10.1111/j.1364-3703.2011.00766.x PubMedCrossRefGoogle Scholar
  98. Oh SK, Young C, Lee M, Oliva R, Bozkurt TO, Cano LM, Win J, Bos JI, Liu HY, van Damme M, Morgan W, Choi D, Van der Vossen EA, Vleeshouwers VG, Kamoun S (2009) In planta expression screens of Phytophthora infestans RXLR effectors reveal diverse phenotypes, including activation of the Solanum bulbocastanum disease resistance protein Rpi-blb2. Plant Cell 21(9):2928–2947. doi: 10.1105/tpc.109.068247
  99. Ottmann C, Luberacki B, Kufner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz HU, Nurnberger T, Oecking C (2009) A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci USA 106(25):10359–10364PubMedCentralPubMedCrossRefGoogle Scholar
  100. Park J, Park B, Jung K, Jang S, Yu K, Choi J, Kong S, Kim S, Kim H, Kim JF, Blair JE, Lee K, Kang S, Lee YH (2008) CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Res 36 (Database issue):D562–571. doi: 10.1093/nar/gkm758
  101. Qiao Y, Liu L, Xiong Q, Flores C, Wong J, Shi J, Wang X, Liu X, Xiang Q, Jiang S, Zhang F, Wang Y, Judelson HS, Chen X, Ma W (2013) Oomycete pathogens encode RNA silencing suppressors. Nat Genet 45(3):330–333. doi: 10.1038/ng.2525 PubMedCentralPubMedCrossRefGoogle Scholar
  102. Qutob D, Chapman BP, Gijzen M (2013) Transgenerational gene silencing causes gain of virulence in a plant pathogen. Nat Commun 4:1349. doi: 10.1038/ncomms2354 PubMedCentralPubMedCrossRefGoogle Scholar
  103. Qutob D, Hraber P, Sobral B, Gijzen M (2000) Comparative analysis of expressed sequences in Phytophthora sojae. Plant Phys 123(1):243–253CrossRefGoogle Scholar
  104. Qutob D, Kamoun S, Gijzen M (2002) Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J 32(3):361–373PubMedCrossRefGoogle Scholar
  105. Qutob D, Kemmerling B, Brunner F, Kufner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nurnberger T (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18(12):3721–3744PubMedCentralPubMedCrossRefGoogle Scholar
  106. Qutob D, Tedman-Jones J, Dong S, Kuflu K, Pham H, Wang Y, Dou D, Kale SD, Arredondo FD, Tyler BM, Gijzen M (2009) Copy number variation and transcriptional polymorphisms of Phytophthora sojae RXLR effector genes Avr1a and Avr3a. PLoS ONE 4(4):e5066PubMedCentralPubMedCrossRefGoogle Scholar
  107. Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RH, Zody MC, Kunjeti SG, Donofrio NM, Meyers BC, Nusbaum C, Kamoun S (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330(6010):1540–1543PubMedCrossRefGoogle Scholar
  108. Ranathunge K, Thomas RH, Fang XX, Peterson CA, Gijzen M, Bernards MA (2008) Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae. Phytopathology 98(11):1179–1189. doi: 10.1094/phyto-98-11-1179 PubMedCrossRefGoogle Scholar
  109. Rentel MC, Leonelli L, Dahlbeck D, Zhao B, Staskawicz BJ (2008) Recognition of the Hyaloperonospora parasitica effector ATR13 triggers resistance against oomycete, bacterial, and viral pathogens. Proc Natl Acad Sci USA 105(3):1091–1096. doi: 10.1073/pnas.0711215105
  110. Richards TA, Soanes DM, Jones MD, Vasieva O, Leonard G, Paszkiewicz K, Foster PG, Hall N, Talbot NJ (2011) Horizontal gene transfer facilitated the evolution of plant parasitic mechanisms in the oomycetes. Proc Natl Acad Sci USA 108(37):15258–15263. doi: 10.1073/pnas.1105100108 PubMedCentralPubMedCrossRefGoogle Scholar
  111. Richards TA, Talbot NJ (2007) Plant parasitic oomycetes such as Phytophthora species contain genes derived from three eukaryotic lineages. Plant Signal Behav 2(2):112–114PubMedCentralPubMedCrossRefGoogle Scholar
  112. Robideau GP, De Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Desaulniers N, Eggertson QA, Gachon CM, Hu CH, Kupper FC, Rintoul TL, Sarhan E, Verstappen EC, Zhang Y, Bonants PJ, Ristaino JB, Levesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11(6):1002–1011. doi: 10.1111/j.1755-0998.2011.03041.x PubMedCentralPubMedCrossRefGoogle Scholar
  113. Sandhu D, Gao H, Cianzio S, Bhattacharyya MK (2004) Deletion of a disease resistance nucleotide-binding-site leucine-rich- repeat-like sequence is associated with the loss of the Phytophthora resistance gene Rps4 in soybean. Genetics 168(4):2157–2167. doi: 10.1534/genetics.104.032037, 168/4/2157
  114. Schmitthenner AF (1985) Problems and progress in control of Phytophthora root rot of soybean. Plant Dis 69(4):362–368CrossRefGoogle Scholar
  115. Schmitthenner AF (2000) Phytophthora Rot of Soybean. In: Hartman GL, Sinclair JB, and Rupe JC (eds) Compendium of soybean diseases, 4th Edn, 1999. The American Phytopathological Society, St. Paul, pp 39–42Google Scholar
  116. Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18(5):1121–1133. doi: 10.1105/tpc.105.039834 PubMedCentralPubMedCrossRefGoogle Scholar
  117. Shan W, Cao M, Leung D, Tyler BM (2004) The Avr1b locus of Phytophthora sojae encodes an elicitor and a regulator required for avirulence on soybean plants carrying resistance gene Rps1b. Mol Plant-Microbe Interact 17(4):394–403PubMedCrossRefGoogle Scholar
  118. Shen D, Liu T, Ye W, Liu L, Liu P, Wu Y, Wang Y, Dou D (2013) Gene duplication and fragment recombination drive functional diversification of a superfamily of cytoplasmic effectors in Phytophthora sojae. PLoS ONE 8(7):e70036. doi: 10.1371/journal.pone.0070036 PubMedCentralPubMedCrossRefGoogle Scholar
  119. Sohn KH, Lei R, Nemri A, Jones JD (2007) The downy mildew effector proteins ATR1 and ATR13 promote disease susceptibility in Arabidopsis thaliana. Plant Cell 19(12):4077–4090PubMedCentralPubMedCrossRefGoogle Scholar
  120. Song T-Q, Kale SD, Arredondo FD, Shen D-Y, Su L-M, Liu L, Wu Y-R, Wang Y-C, Dou D-L, Tyler BM (2013) Two RxLR avirulence genes in Phytophthora sojae determine soybean Rps1k-mediated disease resistance. Mol Plant-Microbe Interact 26(7):711–720PubMedCrossRefGoogle Scholar
  121. Stajich JE, Harris T, Brunk BP, Brestelli J, Fischer S, Harb OS, Kissinger JC, Li W, Nayak V, Pinney DF, Stoeckert CJ, Jr., Roos DS (2012) FungiDB: an integrated functional genomics database for fungi. Nucleic Acids Res 40 (Database issue):D675–681. doi: 10.1093/nar/gkr918
  122. Sugimoto T, Kato M, Yoshida S, Matsumoto I, Kobayashi T, Kaga A, Hajika M, Yamamoto R, Watanabe K, Aino M, Matoh T, Walker DR, Biggs AR, Ishimoto M (2012) Pathogenic diversity of Phytophthora sojae and breeding strategies to develop Phytophthora-resistant soybeans. Breed Sci 61(5):511–522PubMedCentralPubMedCrossRefGoogle Scholar
  123. Sugimoto T, Yoshida S, Kaga A, Hajika M, Watanabe K, Aino M, Tatsuda K, Yamamoto R, Matoh T, Walker DR, Biggs AR, Ishimoto M (2011) Genetic analysis and identification of DNA markers linked to a novel Phytophthora sojae resistance gene in the Japanese soybean cultivar Waseshiroge. Euphytica 182(1):133–145. doi: 10.1007/s10681-011-0525-8 CrossRefGoogle Scholar
  124. Sun F, Kale SD, Azurmendi HF, Li D, Tyler BM, Capelluto DGS (2013) Structural basis for interactions of the Phytophthora sojae RXLR effector Avh5 with phosphatidylinositol 3-phosphate and for host cell entry. Mol Plant-Microbe Interact 26(3):330–344.
  125. Sun S, Wu XL, Zhao JM, Wang YC, Tang QH, Yu DY, Gai JY, Xing H (2011) Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breed 130(2):139–143. doi: 10.1111/j.1439-0523.2010.01794.x CrossRefGoogle Scholar
  126. Thomas R, Fang X, Ranathunge K, Anderson TR, Peterson CA, Bernards MA (2007) Soybean root suberin: anatomical distribution, chemical composition, and relationship to partial resistance to Phytophthora sojae. Plant Phys 144(1):299–311CrossRefGoogle Scholar
  127. Torto TA, Li S, Styer A, Huitema E, Testa A, Gow NA, van West P, Kamoun S (2003) EST mining and functional expression assays identify extracellular effector proteins from the plant pathogen Phytophthora. Genome Res 13(7):1675–1685PubMedCentralPubMedCrossRefGoogle Scholar
  128. Torto-Alalibo T, Tripathy S, Smith BM, Arredondo F, Zhou L, Li H, Qutob D, Gijzen M, Mao C, Sobral BWS, Waugh ME, Mitchell TK, Dean RA, Tyler BM (2007) Expressed sequence tags from Phytophthora sojae reveal genes specific to development and infection. Mol Plant-Microbe Interact 20(7):781–793PubMedCrossRefGoogle Scholar
  129. Tripathy S, Deo T, Tyler BM (2012) Oomycete transcriptomics database: a resource for oomycete transcriptomes. BMC Genom 13:303CrossRefGoogle Scholar
  130. Tripathy S, Pandey VN, Fang B, Salas F, Tyler BM (2006) VMD: a community annotation database for microbial genomes. Nucleic Acids Res 34:D379–D381. doi: 10.1093/nar/gkj042 PubMedCentralPubMedCrossRefGoogle Scholar
  131. Tyler BM, Wu M-H, Wang J-M, Cheung WWS, Morris PF (1996) Chemotactic preferences and strain variation in the response of Phytophthora sojae zoospores to host isoflavones. Appl Environ Microbiol 62(8):2811–2817PubMedCentralPubMedGoogle Scholar
  132. Tyler BM (2002) Molecular basis of recognition between Phytophthora pathogens and their hosts. Annu Rev Phytopathol 40:137–167PubMedCrossRefGoogle Scholar
  133. Tyler BM (2007) Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol 8(1):1–8PubMedCrossRefGoogle Scholar
  134. Tyler BM, Forster H, Coffey MD (1995) Inheritance of avirulence factors and restriction fragment length polymorphism markers in outcrosses of the oomycete Phytophthora sojae. Mol Plant-Microbe Interact 8:515–523CrossRefGoogle Scholar
  135. Tyler BM, Tripathy S, Zhang X, Dehal P, Jiang RH, Aerts A, Arredondo FD, Baxter L, Bensasson D, Beynon JL, Chapman J, Damasceno CM, Dorrance AE, Dou D, Dickerman AW, Dubchak IL, Garbelotto M, Gijzen M, Gordon SG, Govers F, Grunwald NJ, Huang W, Ivors KL, Jones RW, Kamoun S, Krampis K, Lamour KH, Lee MK, McDonald WH, Medina M, Meijer HJ, Nordberg EK, Maclean DJ, Ospina-Giraldo MD, Morris PF, Phuntumart V, Putnam NH, Rash S, Rose JK, Sakihama Y, Salamov AA, Savidor A, Scheuring CF, Smith BM, Sobral BW, Terry A, Torto-Alalibo TA, Win J, Xu Z, Zhang H, Grigoriev IV, Rokhsar DS, Boore JL (2006) Phytophthora genome sequences uncover evolutionary origins and mechanisms of pathogenesis. Science 313(5791):1261–1266PubMedCrossRefGoogle Scholar
  136. Tyler BM, Kale SD, Wang Q, Tao K, Clark HR, Drews K, Antignani V, Rumore A, Hayes T, Plett JM, Fudal I, Gu B, Chen Q, Affeldt KJ, Berthier E, Fischer GJ, Dou D, Shan W, Keller N, Martin F, Rouxel T, Lawrence CB (2013) Microbe-independent entry of oomycete RxLR effectors and fungal RxLR-like effectors into plant and animal cells is specific and reproducible. Mol Plant-Microbe Interact 26(7):611–616PubMedCentralPubMedCrossRefGoogle Scholar
  137. van West P, Kamoun S, van ‘t Klooster JW, Govers F (1999) Internuclear gene silencing in Phytophthora infestans. Mol Cell 3(3):339–348Google Scholar
  138. van West P, Shepherd SJ, Walker CA, Li S, Appiah AA, Grenville-Briggs LJ, Govers F, Gow NA (2008) Internuclear gene silencing in Phytophthora infestans is established through chromatin remodelling. Microbiology 154(Pt 5):1482–1490Google Scholar
  139. Vetukuri RR, Asman AK, Tellgren-Roth C, Jahan SN, Reimegard J, Fogelqvist J, Savenkov E, Soderbom F, Avrova AO, Whisson SC, Dixelius C (2012) Evidence for small RNAs homologous to effector-encoding genes and transposable elements in the oomycete Phytophthora infestans. PLoS ONE 7(12):e51399PubMedCentralPubMedCrossRefGoogle Scholar
  140. Wade M, Albersheim P (1979) Race-specific molecules that protect soybeans from Phytophthora megasperma var. sojae. Proc Natl Acad Sci USA 76(9):4433–4437Google Scholar
  141. Wang H, Wijeratne A, Wijeratne S, Lee S, Taylor CG, St Martin SK, McHale L, Dorrance AE (2012) Dissection of two soybean QTL conferring partial resistance to Phytophthora sojae through sequence and gene expression analysis. BMC Genomics 13:428. doi: 10.1186/1471-2164-13-428
  142. Wang Q, Han C, Ferreira AO, Yu X, Ye W, Tripathy S, Kale SD, Gu B, Sheng Y, Sui Y, Wang X, Zhang Z, Cheng B, Dong S, Shan W, Zheng X, Dou D, Tyler BM, Wang Y (2011) Transcriptional programming and functional interactions within the Phytophthora sojae RXLR effector repertoire. Plant Cell 23(6):2064–2086PubMedCentralPubMedCrossRefGoogle Scholar
  143. Wang Z, Wang Y, Zhang Z, Zheng X (2007) Genetic relationships among Chinese and American isolates of Phytophthora sojae by ISSR markers. Biodivers Sci 15(3):215–223CrossRefGoogle Scholar
  144. Ward EWB (1990) The interaction of soya beans with Phytophthora megasperma f.sp. glycinea: pathogenicity. In: Hornby D (ed) Biological control of soil-borne plant pathogens. CAB International, Wallingford, pp 311–327Google Scholar
  145. Weng C, Yu K, Andersen TR, Poysa V (2007) A quantitative trait locus influencing tolerance to Phytophthora root rot in the soybean cultivar ‘Conrad’. Euphytica 158:81–86CrossRefGoogle Scholar
  146. Whisson S, Vetukuri R, Avrova A, Dixelius C (2012) Can silencing of transposons contribute to variation in effector gene expression in Phytophthora infestans? Mob Genet Elem 2(2):110–114CrossRefGoogle Scholar
  147. Whisson SC, Avrova AO, VANW P, Jones JT (2005) A method for double-stranded RNA-mediated transient gene silencing in Phytophthora infestans. Mol Plant Pathol 6(2):153–163. doi: 10.1111/j.1364-3703.2005.00272.x
  148. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG, Gilroy EM, Armstrong MR, Grouffaud S, West Pv, Chapman S, Hein I, Toth IK, Pritchard L, Birch PRJ (2007) A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–119Google Scholar
  149. Whisson SC, Drenth A, Maclean DJ, Irwin JA (1994) Evidence for outcrossing in Phytophthora sojae and linkage of a DNA marker to two avirulence genes. Curr Genet 27(1):77–82PubMedCrossRefGoogle Scholar
  150. Whisson SC, Drenth A, Maclean DJ, Irwin JAG (1995) Phytophthora sojae avirulence genes, RAPD and RFLP markers used to construct a detailed genetic linkage map. Mol Plant-Microbe Interact 8(6):988–995PubMedCrossRefGoogle Scholar
  151. Whisson SC, Randall E, Young V, Birch PRJ, Cooke DEL, Csukai M (2013) Involvement of RNA polymerase I in mefenoxam insensitivity in Phytophthora infestans. In: Oomycete molecular genetics network meeting, Asilomar, California, 2013Google Scholar
  152. Win J, Krasileva KV, Kamoun S, Shirasu K, Staskawicz BJ, Banfield MJ (2012) Sequence divergent RXLR effectors share a structural fold conserved across plant pathogenic oomycete species. PLoS Pathog 8(1):e1002400PubMedCentralPubMedCrossRefGoogle Scholar
  153. Win J, Morgan W, Bos J, Krasileva KV, Cano LM, Chaparro-Garcia A, Ammar R, Staskawicz BJ, Kamoun S (2007) Adaptive evolution has targeted the C-terminal domain of the RXLR effectors of plant pathogenic oomycetes. Plant Cell 19(8):2349–2369PubMedCentralPubMedCrossRefGoogle Scholar
  154. Wrather JA, Koenning SR (2006) Estimates of disease effects on soybean yields in the United States 2003 to 2005. J Nematol 38(2):173–180PubMedCentralPubMedGoogle Scholar
  155. Wu XL, Zhang BQ, Sun S, Zhao JM, Yang F, Guo N, Gai JY, Xing H (2011) Identification, genetic analysis and mapping of resistance to Phytophthora sojae of Pm28 in soybean. Agric Sci China 10(10):1506–1511. doi: 10.1016/s1671-2927(11)60145-4 CrossRefGoogle Scholar
  156. Yao HY, Wang XL, Wu X, Xiao Y, Zhu Z (2010) Molecular mapping of Phytophthora resistance gene in soybean cultivar Zaoshu 18. J Plant Genet Resour 2:213–217Google Scholar
  157. Ye W, Wang X, Tao K, Lu Y, Dai T, Dong S, Dou D, Gijzen M, Wang Y (2011) Digital gene expression profiling of the Phytophthora sojae transcriptome. Mol Plant-Microbe Interact 24(12):1530–1539. doi: 10.1094/MPMI-05-11-0106 PubMedCrossRefGoogle Scholar
  158. Yin W, Dong S, Zhai L, Lin Y, Zheng X, Wang Y (2013) The Phytophthora sojae Avr1d gene encodes an RxLR-dEER effector with presence and absence polymorphisms among pathogen strains. Mol Plant Microbe Interact 26(8):958–968. doi: 10.1094/MPMI-02-13-0035-R PubMedGoogle Scholar
  159. Yu X, Tang J, Wang Q, Ye W, Tao K, Duan S, Lu C, Yang X, Dong S, Zheng X, Wang Y (2012) The RxLR effector Avh241 from Phytophthora sojae requires plasma membrane localization to induce plant cell death. New Phytol 196(1):247–260. doi: 10.1111/j.1469-8137.2012.04241.x PubMedCrossRefGoogle Scholar
  160. Zhang J, Xia C, Wang X, Duan C, Sun S, Wu X, Zhu Z (2013a) Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor Appl Genet 126(6):1555–1561. doi: 10.1007/s00122-013-2073-1 PubMedCrossRefGoogle Scholar
  161. Zhang X, Xu Z, Tripathy S, Lee M-K, Scheuring C, Ko A, Tian K, Arredondo F, Zhang H-B, Tyler BM (2006) An integrated BAC and genome sequence physical map of Phytophthora sojae. Mol Plant-Microbe Interact 19(12):1302–1310PubMedCrossRefGoogle Scholar
  162. Zhang Y, Zhang F, Li X, Baller JA, Qi Y, Starker CG, Bogdanove AJ, Voytas DF (2013b) Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Phys 161(1):20–27. doi: 10.1104/pp.112.205179 CrossRefGoogle Scholar
  163. Zhang J, Xia C, Duan C, Sun S, Wang X, Wu X, Zhu Z (2013c) Identification and candidate gene analysis of a novel Phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS ONE 8(7):e69799. doi: 10.1371/journal.pone.0069799 PubMedCentralPubMedCrossRefGoogle Scholar
  164. Zhou L, Mideros SX, Bao L, Hanlon R, Arredondo FD, Tripathy S, Krampis K, Jerauld A, Evans C, St. Martin SK, Maroof SMA, Hoeschele I, Dorrance AE, Tyler BM (2009) Infection and genotype remodel the entire soybean transcriptome. BMC Genomics 10:49Google Scholar
  165. Zhu ZD, Huo YL, Wang XM, Huang JB, Wu XF (2010) Molecular identification of a novel Phytophthora resistance gene in soybean. Acta Agron Sinica 33(2):154–157.
  166. Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q, Zhu Z, Zhang B, Lin S (2013) TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 10(4):329–331. doi: 10.1038/nmeth.2374 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2014

Authors and Affiliations

  1. 1.Department of Botany and Plant Pathology and Center for Genome Research and BiocomputingOregon State UniversityCorvallisUSA
  2. 2.Agriculture and Agri-Food CanadaLondonCanada

Personalised recommendations