Skip to main content

Verticillium alfalfae and V . dahliae, Agents of Verticillium Wilt Diseases

  • Chapter
  • First Online:
Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens

Abstract

Verticillium dahliae and V. alfalfae (formerly Verticillium albo-atrum) are two important agricultural pathogens that affect many crops around the world and cause a distinct type of vascular wilt, which are known as Verticillium wilts. Several V. alfalfae and V. dahliae genomes have been sequenced, and are among the smaller genomes from filamentous ascomycetes. The number of predicted protein-encoding genes is similar to the saprobe Neurospora crassa. Perhaps reflective of their particular hemibiotrophic life styles, some gene families are expanded in the V. alfalfae and V. dahliae genomes. These include the gene families encoding glycoside hydrolases GH88, necrosis and ethylene-inducing-like proteins (NLPs), LysM effectors, proteins with chitin-recognition motifs, and cutinases. But the number of predicted secreted proteins was less than half that of the related Colletotrichum species, the agents of anthracnose diseases. V. dahliae strains generally contain lineage-specific regions (LS regions), which may play an important role in virulence and pathogenicity. Examples for horizontal transfer into Verticillium ancestors include the virulence factor Ave1, a glucan glucosyltransferase, and potentially some of the retrotransposons. The V. alfalfae and V. dahliae genomes have already had significant impacts on various aspects of basic and applied Verticillium research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander LJ (1962) Susceptibility of certain Verticillium-resistant tomato varieties to an Ohio isolate of the pathogen. Phytopathology 52(10):998–1000

    Google Scholar 

  • Almany GR, De Arruda MP, Arthofer W, Atallah ZK, Beissinger SR, Berumen ML, Bogdanowicz SM, Brown SD, Bruford MW, Burdine C, Busch JW, Campbell NR, Carey D, Carstens BC, Chu KH, Cubeta MA, Cuda JP, Cui Z, Datnoff LE, Dávila JA, Davis ES, Davis RM, Diekmann OE, Eizirik E, Fargallo JA, Fernandes F, Fukuda H, Gale LR, Gallagher E, Gao Y, Girard P, Godhe A, Gonçalves EC, Gouveia L, Grajczyk AM, Grose MJ, Gu Z, Halldén C, Härnström K, Hemmingsen AH, Holmes G, Huang CH, Huang C-C, Hudman SP, Jones GP, Kanetis L, Karunasagar I, Karunasagar I, Keyghobadi N, Klosterman SJ, Klug PE, Koch J, Koopman MM, Köppler K, Koshimizu E, Krumböck S, Kubisiak T, Landis JB, Lasta ML, Lee C-Y, Li Q, Li S-H, Lin R-C, Liu M, Liu NA, Liu WC, Liu Y, Loiseau A, Luan W, Maruthachalam KK, McCormick HM, Mellick R, Monnahan PJ, Morielle-Versute E, Murray TE, Narum SR, Neufeld K, De Nova PJG, Ojiambo PS, Okamoto N, Othman AS, Overholt WA, Pardini R, Paterson IG, Patty OA, Paxton RJ, Planes S, Porter C, Pratchett MS, Püttker T, Rasic G, Rasool B, Rey O, Riegler M, Riehl C, Roberts JMK, Roberts PD, Rochel E, Roe KJ, Rossetto M, Ruzzante DE, Sakamoto T, Saravanan V, Sarturi CR, Schmidt A, Schneider MPC, Schuler H, Serb JM, Serrão ETA, Shi Y, Silva A, Sin YW, Sommer S, Stauffer C, Strüssmann CA, Subbarao KV, Syms C, Tan F, Tejedor ED, Thorrold SR, Trigiano RN, Trucco MI, Tsuchiya-Jerep MTN, Vergara P, Van De Vliet MS, Wadl PA, Wang A, Wang H, Wang RX, Wang X, Wang YAN, Weeks AR, Wei F, Werner WJ, Wiley EO, Williams DA, Wilkins RJ, Wisely SM, With KA, Wu D, Yao C-T, Yau C, Yeap B-K, Zhai B-P, Zhan X, Zhang G-Y, Zhang SY, Zhao RU, Zhu L (2009) Permanent genetic resources added to Molecular Ecology Resources Database 1 May 2009–31 July 2009. Mol Ecol Resour 9(6):1460–1466. doi:10.1111/j.1755-0998.2009.02759.x

    PubMed  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    PubMed Central  PubMed  CAS  Google Scholar 

  • Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, Couloux A, Coutinho PM, de Vries RP, Dyer PS, Fillinger S, Fournier E, Gout L, Hahn M, Kohn L, Lapalu N, Plummer KM, Pradier J-M, Quévillon E, Sharon A, Simon A, ten Have A, Tudzynski B, Tudzynski P, Wincker P, Andrew M, Anthouard V, Beever RE, Beffa R, Benoit I, Bouzid O, Brault B, Chen Z, Choquer M, Collémare J, Cotton P, Danchin EG, Da Silva C, Gautier A, Giraud C, Giraud T, Gonzalez C, Grossetete S, Güldener U, Henrissat B, Howlett BJ, Kodira C, Kretschmer M, Lappartient A, Leroch M, Levis C, Mauceli E, Neuvéglise C, Oeser B, Pearson M, Poulain J, Poussereau N, Quesneville H, Rascle C, Schumacher J, Ségurens B, Sexton A, Silva E, Sirven C, Soanes DM, Talbot NJ, Templeton M, Yandava C, Yarden O, Zeng Q, Rollins JA, Lebrun M-H, Dickman M (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7(8):e1002230. doi:10.1371/journal.pgen.1002230

    PubMed Central  PubMed  CAS  Google Scholar 

  • Amyotte SG, Tan X, Pennerman K, del Mar Jimenez-Gasco M, Klosterman SJ, Ma L-J, Dobinson KF, Veronese P (2012) Transposable elements in phytopathogenic Verticillium spp.: insights into genome evolution and inter- and intra-specific diversification. BMC Genomics 13:314. doi:10.1186/1471-2164-13-314

  • Anderson JP, Gleason CA, Foley RC, Thrall PH, Burdon JB, Singh KB (2010) Plants versus pathogens: an evolutionary arms race. Funct Plant Biol 37(6):499–512. doi:10.1071/FP09304

    PubMed Central  PubMed  Google Scholar 

  • Anonymous (2011) Best is yet to come. Nature 470(7333):140. doi:10.1038/470140a

  • Atallah ZK, Hayes RJ, Subbarao KV (2011a) Fifteen years of Verticillium wilt of lettuce in America’s salad bowl: a tale of immigration, subjugation, and abatement. Plant Dis 95(7):784–792. doi:10.1094/PDIS-01-11-0075

    Google Scholar 

  • Atallah ZK, Maruthachalam K, du Toit L, Koike ST, Davis RM, Klosterman SJ, Hayes RJ, Subbarao KV (2010) Population analyses of the vascular plant pathogen Verticillium dahliae detect recombination and transcontinental gene flow. Fungal Genet Biol 47(5):416–422. doi:10.1016/j.fgb.2010.02.003

    PubMed  CAS  Google Scholar 

  • Atallah ZK, Maruthachalam K, Subbarao KV (2012) Sources of Verticillium dahliae affecting lettuce. Phytopathology 102(11):1071–1078. doi:10.1094/phyto-04-12-0067-r

    PubMed  Google Scholar 

  • Atallah ZK, Maruthachalam K, Vallad GE, Davis RM, Klosterman SJ, Subbarao KV (2011b) Analysis of Verticillium dahliae suggests a lack of correlation between genotypic diversity and virulence phenotypes. Plant Dis 95(10):1224–1232. doi:10.1094/pdis-02-11-0110

    Google Scholar 

  • Atallah ZK, Subbarao KV (2012) Population biology of fungal plant pathogens. In: Bolton MD, Thomma BPHJ (eds) Plant fungal pathogens: methods and protocols, vol 835. Methods in Molecular Biology. Humana Press, Totowa, pp 333–363. doi:10.1007/978-1-61779-501-5_20

  • Babadoost M, Chen W, Bratsch AD, Eastman CE (2004) Verticillium longisporum and Fusarium solani: two new species in the complex of internal discoloration of horseradish roots. Plant Pathol 53(5):669–676. doi:10.1111/j.1365-3059.2004.01070.x

    Google Scholar 

  • Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376. doi:10.1371/journal.pone.0003376

    PubMed Central  PubMed  Google Scholar 

  • Barasubiye T, Parent J-G, Hamelin RC, Laberge S, Richard C, Dostaler D (1995) Discrimination between alfalfa and potato isolates of Verticillium albo-atrum using RAPD markers. Mycol Res 99(12):1507–1512. doi:10.1016/S0953-7562(09)80800-9

    Google Scholar 

  • Barbara DJ, Clewes E (2003) Plant pathogenic Verticillium species: How many of them are there? Mol Plant Pathol 4(4):297–305. doi:10.1046/J.1364-3703.2003.00172.X

    PubMed  CAS  Google Scholar 

  • Bartnicki-Garcia S (1968) Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu Rev Microbiol 22:87–108. doi:10.1146/annurev.mi.22.100168.000511

    PubMed  CAS  Google Scholar 

  • Berbegal M, Garzón CD, Ortega A, Armengol J, Jiménez-Díaz RM, Jiménez-Gasco MM (2011) Development and application of new molecular markers for analysis of genetic diversity in Verticillium dahliae populations. Plant Pathol 60(5):866–877. doi:10.1111/j.1365-3059.2011.02432.x

    CAS  Google Scholar 

  • Bishop CD, Cooper RM (1983) An ultrastructural study of root invasion in three vascular wilt diseases. Physiol Plant Pathol 22(1):15–27. doi:10.1016/S0048-4059(83)81034-0

    Google Scholar 

  • Bohin JP (2000) Osmoregulated periplasmic glucans in Proteobacteria. FEMS Microbiol Lett 186(1):11–19. doi:10.1111/j.1574-6968.2000.tb09075.x

    PubMed  CAS  Google Scholar 

  • Brasier CM (1991) Ophiostoma novo-ulmi sp. nov., causative agent of current Dutch elm disease pandemics. Mycopathologia 115(3):151–161. doi:10.1007/bf00462219

    Google Scholar 

  • Cambareri EB, Jensen BC, Schabtach E, Selker EU (1989) Repeat-induced G–C to A–T mutations in Neurospora. Science 244(4912):1571–1575. doi:10.1126/science.2544994

    PubMed  CAS  Google Scholar 

  • Cambareri EB, Singer MJ, Selker EU (1991) Recurrence of repeat-induced point mutation (RIP) in Neurospora crassa. Genetics 127(4):699–710. http://www.genetics.org/content/127/4/699.long

  • Cannon PF, Buddie AG, Bridge PD, de Neergaard E, Lübeck M, Askar MM (2012) Lectera, a new genus of the Plectosphaerellaceae for the legume pathogen Volutella colletotrichoides. MycoKeys 3:23–36. doi:10.3897/mycokeys.3.3065

    Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(suppl 1):D233–D238. doi:10.1093/nar/gkn663

    PubMed Central  PubMed  CAS  Google Scholar 

  • Carder JH, Barbara DJ (1991) Molecular variation and restriction fragment length polymorphisms (RFLPs) within and between six species of Verticillium. Mycol Res 95(8):935–942. doi:10.1016/S0953-7562(09)80090-7

    CAS  Google Scholar 

  • Caten CE, Jinks JL (1966) Heterokaryosis: its significance in wild homothallic ascomycetes and fungi imperfecti. Trans Br Mycol Soc 49(1):81–93. doi:10.1016/S0007-1536(66)80038-4

    Google Scholar 

  • Chen P, Lee B, Robb J (2004) Tolerance to a non-host isolate of Verticillium dahliae in tomato. Physiol Mol Plant Pathol 64(6):283–291. doi:10.1016/j.pmpp.2004.10.002

    CAS  Google Scholar 

  • Chen RE, Thorner J (2007) Function and regulation in MAPK signaling pathways: lessons learned from the yeast Saccharomyces cerevisiae. Biochim Biophys Acta 1773(8):1311–1340. doi:10.1016/j.bbamcr.2007.05.003

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chuma I, Isobe C, Hotta Y, Ibaragi K, Futamata N, Kusaba M, Yoshida K, Terauchi R, Fujita Y, Nakayashiki H, Valent B, Tosa Y (2011) Multiple translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Path 7(7):e1002147. doi:10.1371/journal.ppat.1002147

    CAS  Google Scholar 

  • Coleman JJ, Rounsley SD, Rodriguez-Carres M, Kuo A, Wasmann CC, Grimwood J, Schmutz J, Taga M, White GJ, Zhou S, Schwartz DC, Freitag M, Ma L-j, Danchin EGJ, Henrissat B, Coutinho PM, Nelson DR, Straney D, Napoli CA, Barker BM, Gribskov M, Rep M, Kroken S, Molnár I, Rensing C, Kennell JC, Zamora J, Farman ML, Selker EU, Salamov A, Shapiro H, Pangilinan J, Lindquist E, Lamers C, Grigoriev IV, Geiser DM, Covert SF, Temporini E, VanEtten HD (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5(8):e1000618. doi:10.1371/journal.pgen.1000618

    PubMed Central  PubMed  Google Scholar 

  • Collins A, Okoli CA, Morton A, Parry D, Edwards SG, Barbara DJ (2003) Isolates of Verticillium dahliae pathogenic to crucifers are of at least three distinct molecular types. Phytopathology 93(3):364–376. doi:10.1094/PHYTO.2003.93.3.364

    PubMed  Google Scholar 

  • Cooper RM, Wood RKS (1980) Cell wall degrading enzymes of vascular wilt fungi. III. Possible involvement of endo-pectin lyase in Verticillium wilt of tomato. Physiol Plant Pathol 16(2):285–300. doi:10.1016/0048-4059(80)90043-0

    CAS  Google Scholar 

  • Corsini DL, Davis JR, Pavek JJ (1985) Stability of resistance of potato to strains of Verticillium dahliae from different vegetative compatibility groups. Plant Dis 69(11):980–982. doi:10.1094/PD-69-980

    Google Scholar 

  • Cuomo CA, Güldener U, Xu J-R, Trail F, Turgeon BG, Di Pietro A, Walton JD, Ma L-J, Baker SE, Rep M, Adam G, Antoniw J, Baldwin T, Calvo S, Chang Y-L, DeCaprio D, Gale LR, Gnerre S, Goswami RS, Hammond-Kosack K, Harris LJ, Hilburn K, Kennell JC, Kroken S, Magnuson JK, Mannhaupt G, Mauceli E, Mewes H-W, Mitterbauer R, Muehlbauer G, Münsterkötter M, Nelson D, O’Donnell K, Ouellet T, Qi W, Quesneville H, Roncero MIG, Seong K-Y, Tetko IV, Urban M, Waalwijk C, Ward TJ, Yao J, Birren BW, Kistler HC (2007) The Fusarium graminearum genome reveals a link between localized polymorphism and pathogen specialization. Science 317(5843):1400–1402. doi:10.1126/science.1143708

    PubMed  CAS  Google Scholar 

  • de Jonge R, Bolton MD, Kombrink A, van den Berg GCM, Yadeta KA, Thomma BPHJ (2013) Extensive chromosomal reshuffling drives evolution of virulence in an asexual pathogen. Genome Res 23(8):1271–1282. doi:10.1101/gr.152660.112

    PubMed Central  PubMed  Google Scholar 

  • de Jonge R, Bolton MD, Thomma BPHJ (2011) How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr Opin Plant Biol 14(4):400–406. doi:10.1016/j.pbi.2011.03.005

    PubMed  Google Scholar 

  • de Jonge R, Thomma BPHJ (2009) Fungal LysM effectors: extinguishers of host immunity? Trends Microbiol 17(4):151–157. doi:10.1016/j.tim.2009.01.002

    PubMed  Google Scholar 

  • de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MH, Thomma BPHJ (2010) Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329(5994):953–955. doi:10.1126/science.1190859

    PubMed  Google Scholar 

  • de Jonge R, van Esse PH, Maruthachalam K, Bolton MD, Santhanam P, Saber MK, Zhang Z, Usami T, Lievens B, Subbarao KV, Thomma BPHJ (2012) Tomato immune receptor Ve1 recognizes effector of multiple fungal pathogens uncovered by genome and RNA sequencing. Proc Natl Acad Sci U S A 109(13):5110–5115. doi:10.1073/pnas.1119623109

    PubMed Central  PubMed  Google Scholar 

  • Dean RA, Talbot NJ, Ebbole DJ, Farman ML, Mitchell TK, Orbach MJ, Thon M, Kulkarni R, Xu J-R, Pan H, Read ND, Lee Y-H, Carbone I, Brown D, Oh YY, Donofrio N, Jeong JS, Soanes DM, Djonovic S, Kolomiets E, Rehmeyer C, Li W, Harding M, Kim S, Lebrun M-H, Bohnert H, Coughlan S, Butler J, Calvo S, Ma L-J, Nicol R, Purcell S, Nusbaum C, Galagan JE, Birren BW (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434(7036):980–986. doi:10.1038/nature03449

    PubMed  CAS  Google Scholar 

  • Debets AJM (1998) Parasexuality in fungi: mechanisms and significance in wild populations. In: Bridge P, Couteaudier Y, Clarkson J (eds) Molecular variability of fungal pathogens. CAB International, Wallingford, pp 41–52

    Google Scholar 

  • Debuchy R, Turgeon BG (2006) Mating-type structure, evolution, and function in Euascomycetes. In: Kües U, Fischer R (eds) The Mycota I: Growth, differentation and sexuality. Springer, Berlin, pp 293–323. doi:10.1007/3-540-28135-5_15

  • Dobinson K, Grant S, Kang S (2004) Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation, of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae. Curr Genet 45(2):104–110. doi:10.1007/s00294-003-0464-6

    PubMed  CAS  Google Scholar 

  • Dobinson KF (1995) Genetic transformation of the vascular wilt fungus Verticillium dahliae. Can J Bot 73(5):710–715. doi:10.1139/b95-076

    Google Scholar 

  • Dong S, Kong G, Qutob D, Yu X, Tang J, Kang J, Dai T, Wang H, Gijzen M, Wang Y (2012) The NLP toxin family in Phytophthora sojae includes rapidly evolving groups that lack necrosis-inducing activity. Mol Plant-Microbe Interact 25(7):896–909. doi:10.1094/mpmi-01-12-0023-r

    PubMed  CAS  Google Scholar 

  • Down G, Barbara D, RadiÅ¡ek S (2007) Verticillium albo-atrum and V. dahliae on hop. EPPO Bull 37(3):528–535. doi:10.1111/j.1365-2338.2007.01160.x

    Google Scholar 

  • Dunker S, Keunecke H, Steinbach P, von Tiedemann A (2008) Impact of Verticillium longisporum on yield and morphology of winter oilseed rape (Brassica napus) in relation to systemic spread in the plant. J Phytopathol 156(11–12):698–707. doi:10.1111/j.1439-0434.2008.01429.x

    Google Scholar 

  • Durrands PK, Cooper RM (1988a) The role of pectinases in vascular wilt disease as determined by defined mutants of Verticillium albo-atrum. Physiol Mol Plant Pathol 32(3):363–371. doi:10.1016/S0885-5765(88)80030-4

    Google Scholar 

  • Durrands PK, Cooper RM (1988b) Selection and characterization of pectinase-deficient mutants of the vascular wilt pathogen Verticillium albo-atrum. Physiol Mol Plant Pathol 32(3):343–362. doi:10.1016/S0885-5765(88)80029-8

    CAS  Google Scholar 

  • Ellis EA, McEachern GR, Clark S, Cobb BG (2010) Ultrastructure of pit membrane dissolution and movement of Xylella fastidiosa through pit membranes in petioles of Vitis vinifera. Botany 88(6):596–600. doi:10.1139/B10-025

    Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6(5):e19379. doi:10.1371/journal.pone.0019379

    PubMed Central  PubMed  CAS  Google Scholar 

  • Enebak SA (2012) Soil fumigation: the critical use exemption, quarantine pre-shipment rules, re-registration decision and their effect on the 2012 growing season. In: Haase DL, Pinto JR, Riley LE (eds) National proceedings: forest and conservation nursery associations—2011, Fort Collins, CO. USDA Forest Service, Rocky Mountain Research Station, 2012, pp 26–30. http://www.fs.fed.us/rm/pubs/rmrs_p068.html

  • Fahleson J, Lagercrantz U, Hu Q, Steventon LA, Dixelius C (2003) Estimation of genetic variation among Verticillium isolates using AFLP analysis. Eur J Plant Pathol 109(4):361–371. doi:10.1023/a:1023534005538

    CAS  Google Scholar 

  • Faino L, de Jonge R, Thomma BPHJ (2012) The transcriptome of Verticillium dahliae-infected Nicotiana benthamiana determined by deep RNA sequencing. Plant Signal Behav 7(9):1065–1069. doi:10.4161/psb.21014

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fitzell R, Evans G, Fahy P (1980) Studies on the colonization of plant roots by Verticillium dahliae Klebahn with use of immunofluorescent staining. Aust J Bot 28(3):357–368. doi:10.1071/BT9800357

    Google Scholar 

  • Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GCM, Joosten MHAJ, Thomma BPHJ (2011) Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. Plant Physiol 156(4):2255–2265. doi:10.1104/pp.111.180067

    PubMed Central  PubMed  CAS  Google Scholar 

  • Fradin EF, Thomma BPHJ (2006) Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum. Mol. Plant Pathol 7(2):71–86. doi:10.1111/J.1364-3703.2006.00323.X

    CAS  Google Scholar 

  • Fradin EF, Zhang Z, Juarez Ayala JC, Castroverde CDM, Nazar RN, Robb J, Liu C-M, Thomma BPHJ (2009) Genetic dissection of Verticillium Wilt resistance mediated by tomato Ve1. Plant Physiol 150(1):320–332. doi:10.1104/pp.109.136762

    PubMed Central  PubMed  CAS  Google Scholar 

  • Freitag M, Williams RL, Kothe GO, Selker EU (2002) A cytosine methyltransferase homologue is essential for repeat-induced point mutation in Neurospora crassa. Proc Natl Acad Sci U S A 99(13):8802–8807. doi:10.1073/pnas.132212899

    PubMed Central  PubMed  CAS  Google Scholar 

  • Friebertshauser GE, DeVay JE (1982) Differential effects of the defoliating and nondefoliating pathotypes of Verticillium dahliae upon the growth and development of Gossypium hirsutum. Phytopathology 72(7):872–877. doi:10.1094/Phyto-72-872

    Google Scholar 

  • Friesen TL, Stukenbrock EH, Liu Z, Meinhardt S, Ling H, Faris JD, Rasmussen JB, Solomon PS, McDonald BA, Oliver RP (2006) Emergence of a new disease as a result of interspecific virulence gene transfer. Nat Genet 38(8):953–956. doi:10.1038/ng1839

    PubMed  CAS  Google Scholar 

  • Galagan JE, Calvo SE, Borkovich KA, Selker EU, Read ND, Jaffe D, FitzHugh W, Ma L-J, Smirnov S, Purcell S, Rehman B, Elkins T, Engels R, Wang S, Nielsen CB, Butler J, Endrizzi M, Qui D, Ianakiev P, Bell-Pedersen D, Nelson MA, Werner-Washburne M, Selitrennikoff CP, Kinsey JA, Braun EL, Zelter A, Schulte U, Kothe GO, Jedd G, Mewes W, Staben C, Marcotte E, Greenberg D, Roy A, Foley K, Naylor J, Stange-Thomann N, Barrett R, Gnerre S, Kamal M, Kamvysselis M, Mauceli E, Bielke C, Rudd S, Frishman D, Krystofova S, Rasmussen C, Metzenberg RL, Perkins DD, Kroken S, Cogoni C, Macino G, Catcheside D, Li W, Pratt RJ, Osmani SA, DeSouza CPC, Glass L, Orbach MJ, Berglund JA, Voelker R, Yarden O, Plamann M, Seiler S, Dunlap J, Radford A, Aramayo R, Natvig DO, Alex LA, Mannhaupt G, Ebbole DJ, Freitag M, Paulsen I, Sachs MS, Lander ES, Nusbaum C, Birren B (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422(6934):859–868. doi:10.1038/nature01554

    PubMed  CAS  Google Scholar 

  • Gan P, Ikeda K, Irieda H, Narusaka M, O’Connell RJ, Narusaka Y, Takano Y, Kubo Y, Shirasu K (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197(4):1236–1249. doi:10.1111/nph.12085

    PubMed  CAS  Google Scholar 

  • Gao F, Zhou B-J, Li G-Y, Jia P-S, Li H, Zhao Y-L, Zhao P, Xia G-X, Guo H-S (2010) A glutamic acid-rich protein identified in Verticillium dahliae from an insertional mutagenesis affects microsclerotial formation and pathogenicity. PLoS ONE 5(12):e15319. doi:10.1371/journal.pone.0015319

    PubMed Central  PubMed  Google Scholar 

  • Garber RH, Houston BR (1966) Penetration and development of Verticillium albo-atrum in the cotton plant. Phytopathology 56(10):1121–1126

    Google Scholar 

  • García-Pedrajas MD, Paz Z, Andrews DL, Baeza-Montañez L, Gold SE (2013) Rapid deletion plasmid construction methods for protoplast and Agrobacterium-based fungal transformation systems. In: Gupta VK, Tuohy MG, Ayyachamy M, Turner KM, O’Donovan A (eds) Laboratory protocols in fungal biology. Fungal Biology. Springer, New York, pp 375–393. doi:10.1007/978-1-4614-2356-0_34

  • Gardiner DM, McDonald MC, Covarelli L, Solomon PS, Rusu AG, Marshall M, Kazan K, Chakraborty S, McDonald BA, Manners JM (2012) Comparative pathogenomics reveals horizontally acquired novel virulence genes in fungi infecting cereal hosts. PLoS Path 8(9):e1002952. doi:10.1371/journal.ppat.1002952

    CAS  Google Scholar 

  • Garron M-L, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20(12):1547–1573. doi:10.1093/glycob/cwq122

    PubMed  CAS  Google Scholar 

  • Gehring CA, Irving HR (2003) Natriuretic peptides—a class of heterologous molecules in plants. Int J Biochem Cell Biol 35(9):1318–1322. doi:10.1016/S1357-2725(03)00032-3

    PubMed  CAS  Google Scholar 

  • Gijzen M, Nürnberger T (2006) Nep1-like proteins from plant pathogens: recruitment and diversification of the NPP1 domain across taxa. Phytochemistry 67(16):1800–1807. doi:10.1016/j.phytochem.2005.12.008

    PubMed  CAS  Google Scholar 

  • Goodwin SB, Ben M’Barek S, Dhillon B, Wittenberg AHJ, Crane CF, Hane JK, Foster AJ, Van der Lee TAJ, Grimwood J, Aerts A, Antoniw J, Bailey A, Bluhm B, Bowler J, Bristow J, van der Burgt A, Canto-Canché B, Churchill ACL, Conde-Ferràez L, Cools HJ, Coutinho PM, Csukai M, Dehal P, De Wit P, Donzelli B, van de Geest HC, van Ham RCHJ, Hammond-Kosack KE, Henrissat B, Kilian A, Kobayashi AK, Koopmann E, Kourmpetis Y, Kuzniar A, Lindquist E, Lombard V, Maliepaard C, Martins N, Mehrabi R, Nap JPH, Ponomarenko A, Rudd JJ, Salamov A, Schmutz J, Schouten HJ, Shapiro H, Stergiopoulos I, Torriani SFF, Tu H, de Vries RP, Waalwijk C, Ware SB, Wiebenga A, Zwiers L-H, Oliver RP, Grigoriev IV, Kema GHJ (2011) Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis. PLoS Genet 7(6):e1002070. doi:10.1371/journal.pgen.1002070

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gottig N, Garavaglia BS, Daurelio LD, Valentine A, Gehring C, Orellano EG, Ottado J (2008) Xanthomonas axonopodis pv. citri uses a plant natriuretic peptide-like protein to modify host homeostasis. Proc Natl Acad Sci U S A 105(47):18631–18636. doi:10.1073/pnas.0810107105

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gray YHM (2000) It takes two transposons to tango: Transposable-element-mediated chromosomal rearrangements. Trends Genet 16(10):461–468. doi:10.1016/S0168-9525(00)02104-1

    PubMed  CAS  Google Scholar 

  • Green ED, Guyer MS (2011) Charting a course for genomic medicine from base pairs to bedside. Nature 470(7333):204–213. doi:10.1038/nature09764

    PubMed  CAS  Google Scholar 

  • Guillén D, Sánchez S, Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl Microbiol Biotechnol 85(5):1241–1249. doi:10.1007/s00253-009-2331-y

    PubMed  Google Scholar 

  • Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, Wang P, Zheng X (2011) The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the rice blast fungus Magnaporthe oryzae. PLoS Path 7(2):e1001302. doi:10.1371/journal.ppat.1001302

    CAS  Google Scholar 

  • Haas BJ, Zeng Q, Pearson MD, Cuomo CA, Wortman JR (2011) Approaches to fungal genome annotation. Mycology 2(3):118–141. doi:10.1080/21501203.2011.606851

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hamel L-P, Nicole M-C, Duplessis S, Ellis BE (2012) Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24(4):1327–1351. doi:10.1105/tpc.112.096156

    PubMed Central  PubMed  CAS  Google Scholar 

  • Harrison JAC, Isaac I (1969) Survival of the causal agents of ‘early-dying disease’ (Verticillium wilt) of potatoes. Ann Appl Biol 63(2):277–288. doi:10.1111/j.1744-7348.1969.tb05489.x

    Google Scholar 

  • Hastie AC (1962) Genetic recombination in the hop-wilt fungus Verticillium albo-atrum. J Gen Microbiol 27(3):373–382. doi:10.1099/00221287-27-3-373

    PubMed  CAS  Google Scholar 

  • Hawksworth DL (1970a) Verticillium nigrescens. CMI Descr Pathog Fungi Bact 26:257. http://www.cabi.org/dfb/

  • Hawksworth DL (1970b) Verticillium nubilum. CMI Descr Pathog Fungi Bact 26:258. http://www.cabi.org/dfb/

  • Hawksworth DL (1970c) Verticillium tricorpus. CMI Descr Pathog Fungi Bact 26:260. http://www.cabi.org/dfb/

  • Hawksworth DL, Holliday P (1970) Verticillium theobromae. CMI Descr Pathog Fungi Bact 26:259. http://www.cabi.org/dfb/

  • Hawksworth DL, Talboys PW (1970a) Verticillium albo-atrum. CMI Descr Pathog Fungi Bact 26:255. http://www.cabi.org/dfb/

  • Hawksworth DL, Talboys PW (1970b) Verticillium dahliae. CMI Descr Pathog Fungi Bact 26:256. http://www.cabi.org/dfb/

  • Heale JB (2000) Diversification and speciation in Verticillium—an overview. In: Tjamos EC, Rowe RC, Heale JB, Fravel DR (eds) Advances in Verticillium research and disease management. APS Press, St. Paul, pp 1–14

    Google Scholar 

  • Heale JB, Isaac I (1963) Wilt of lucerne caused by species of Verticillium. IV. Pathogenicity of V. albo-atrum and V. dahliae to lucerne and other crops; spread and survival of V. albo-atrum in soil and weeds; effect upon lucerne production. Ann Appl Biol 52(3):439–451. doi:10.1111/j.1744-7348.1963.tb03768.x

    Google Scholar 

  • Heale JB, Karapapa VK (1999) The Verticillium threat to Canada’s major oilseed crop: canola. Can J Plant Pathol 21(1):1–7. doi:10.1080/07060661.1999.10600114

    Google Scholar 

  • Herskowitz I (1989) A regulatory hierarchy for cell specialization in yeast. Nature 342(6251):749–757. doi:10.1038/342749a0

    PubMed  CAS  Google Scholar 

  • Hirschberg HJHB, Simons J-WFA, Dekker N, Egmond MR (2001) Cloning, expression, purification and characterization of patatin, a novel phospholipase A. Eur J Biochem 268(19):5037–5044. doi:10.1046/j.0014-2956.2001.02411.x

    PubMed  CAS  Google Scholar 

  • Inderbitzin P, Asvarak T, Turgeon BG (2010) Six new genes required for production of T-Toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize. Mol Plant-Microbe Interact 23(4):458–472. doi:10.1094/MPMI-23-4-0458

    PubMed  CAS  Google Scholar 

  • Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV (2011a) Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS ONE 6(12):e28341. doi:10.1371/journal.pone.0028341

    PubMed Central  PubMed  CAS  Google Scholar 

  • Inderbitzin P, Davis RM, Bostock RM, Subbarao KV (2011b) The ascomycete Verticillium longisporum is a hybrid and a plant pathogen with an expanded host range. PLoS ONE 6(3):e18260. doi:10.1371/journal.pone.0018260

    PubMed Central  PubMed  CAS  Google Scholar 

  • Inderbitzin P, Davis RM, Bostock RM, Subbarao KV (2013) Identification and differentiation of Verticillium species and V. longisporum lineages by simplex and multiplex PCR assays. PLoS ONE 8(6):e65990. doi:10.1371/journal.pone.0065990

    PubMed Central  PubMed  CAS  Google Scholar 

  • Inderbitzin P, Subbarao KV (2014) Verticillium systematics and evolution: Implications of information confusion on Verticillium wilt management and potential solutions. Phytopathology 104(6):564--574. doi: 10.1094/PHYTO-11-13-0315-IA

  • Inoue Y, Kimura A (1996) Identification of the structural gene for glyoxalase I from Saccharomyces cerevisiae. J Biol Chem 271(42):25958–25965. doi:10.1074/jbc.271.42.25958

    PubMed  CAS  Google Scholar 

  • Isaac I (1953) A further comparative study of pathogenic isolates of Verticillium: V. nubilum Pethybr. and V. tricorpus sp. nov. Trans Br Mycol Soc 36(3):180–195. doi:10.1016/S0007-1536(53)80002-1

    Google Scholar 

  • Isaac I (1967) Speciation in Verticillium. Annu Rev Phytopathol 5(1):201–222. doi:10.1146/annurev.py.05.090167.001221

    Google Scholar 

  • Isaac I, Harrison JAC (1968) The symptoms and causal agents of early-dying disease (Verticillium wilt) of potatoes. Ann Appl Biol 61(2):231–244. doi:10.1111/j.1744-7348.1968.tb04528.x

    Google Scholar 

  • Joaquim TR, Rowe RC (1990) Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology 80:1160–1166. doi:10.1094/Phyto-80-1160

    Google Scholar 

  • Jonkers W, Dong Y, Broz K, Corby Kistler H (2012) The Wor1-like protein Fgp1 regulates pathogenicity, toxin synthesis and reproduction in the phytopathogenic fungus Fusarium graminearum. PLoS Path 8(5):e1002724. doi:10.1371/journal.ppat.1002724

    CAS  Google Scholar 

  • Juzwik J, Appel DN, MacDonald WL, Burks S (2011) Challenges and successes in managing oak wilt in the United States. Plant Dis 95(8):888–900. doi:10.1094/pdis-12-10-0944

    Google Scholar 

  • Kämper J, Kahmann R, Bölker M, Ma L-J, Brefort T, Saville BJ, Banuett F, Kronstad JW, Gold SE, Muller O, Perlin MH, Wosten HAB, de Vries R, Ruiz-Herrera J, Reynaga-Pena CG, Snetselaar K, McCann M, Perez-Martin J, Feldbrugge M, Basse CW, Steinberg G, Ibeas JI, Holloman W, Guzman P, Farman M, Stajich JE, Sentandreu R, Gonzalez-Prieto JM, Kennell JC, Molina L, Schirawski J, Mendoza-Mendoza A, Greilinger D, Munch K, Rossel N, Scherer M, Vranes M, Ladendorf O, Vincon V, Fuchs U, Sandrock B, Meng S, Ho ECH, Cahill MJ, Boyce KJ, Klose J, Klosterman SJ, Deelstra HJ, Ortiz-Castellanos L, Li W, Sanchez-Alonso P, Schreier PH, Hauser-Hahn I, Vaupel M, Koopmann E, Friedrich G, Voss H, Schluter T, Margolis J, Platt D, Swimmer C, Gnirke A, Chen F, Vysotskaia V, Mannhaupt G, Guldener U, Munsterkotter M, Haase D, Oesterheld M, Mewes H-W, Mauceli EW, DeCaprio D, Wade CM, Butler J, Young S, Jaffe DB, Calvo S, Nusbaum C, Galagan J, Birren BW (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444(7115):97–101. doi:10.1038/nature05248xxx

    PubMed  Google Scholar 

  • Kapitonov VV, Jurka J (2008) A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9(5):411–412. doi:10.1038/nrg2165-c1

    PubMed  Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR, Kulcsar F, van Rooijen G, Waterer DR, Robertson A, Kokko E, Byers R, Howard RJ, Fischer R, Prüfer D (2001) Tomato Ve disease resistance genes encode cell surface-like receptors. Proc Natl Acad Sci U S A 98(11):6511–6515. doi:10.1073/pnas.091114198

    PubMed Central  PubMed  CAS  Google Scholar 

  • Khoshraftar S, Hung S, Khan S, Gong Y, Tyagi V, Parkinson J, Sain M, Moses A, Christendat D (2013) Sequencing and annotation of the Ophiostoma ulmi genome. BMC Genom 14:162. doi:10.1186/1471-2164-14-162

    CAS  Google Scholar 

  • Kistler HC, Miao VPW (1992) New modes of genetic change in filamentous fungi. Annu Rev Phytopathol 30:131–153. doi:10.1146/annurev.py.30.090192.001023

    PubMed  CAS  Google Scholar 

  • Klimes A, Dobinson KF (2006) A hydrophobin gene, VDH1, is involved in microsclerotial development and spore viability in the plant pathogen Verticillium dahliae. Fungal Genet Biol 43(4):283–294. doi:10.1016/j.fgb.2005.12.006

    PubMed  CAS  Google Scholar 

  • Klimes A, Neumann MJ, Grant SJ, Dobinson KF (2006) Characterization of the glyoxalase I gene from the vascular wilt fungus Verticillium dahliae. Can J Microbiol 52(9):816–822. doi:10.1139/w06-033

    PubMed  CAS  Google Scholar 

  • Klosterman SJ, Atallah ZK, Vallad GE, Subbarao KV (2009) Diversity, pathogenicity, and management of Verticillium species. Annu Rev Phytopathol 47:39–62. doi:10.1146/annurev-phyto-080508-081748

    PubMed  CAS  Google Scholar 

  • Klosterman SJ, Perlin MH, Garcia-Pedrajas M, Covert SF, Gold SE (2007) Genetics of morphogenesis and pathogenic development of Ustilago maydis. Adv Genet 57:1–47. doi:10.1016/S0065-2660(06)57001-4

    PubMed  CAS  Google Scholar 

  • Klosterman SJ, Subbarao KV, Kang S, Veronese P, Gold SE, Thomma BPHJ, Chen Z, Henrissat B, Lee Y-H, Park J, Garcia-Pedrajas MD, Barbara DJ, Anchieta A, de Jonge R, Santhanam P, Maruthachalam K, Atallah Z, Amyotte SG, Paz Z, Inderbitzin P, Hayes RJ, Heiman DI, Young S, Zeng Q, Engels R, Galagan J, Cuomo CA, Dobinson KF, Ma L-J (2011) Comparative genomics yields insights into niche adaptation of plant vascular wilt pathogens. PLoS Path 7(7):e1002137. doi:10.1371/journal.ppat.1002137

    CAS  Google Scholar 

  • Knight CJ, Bailey AM, Foster GD (2009) Agrobacterium-mediated transformation of the plant pathogenic fungus, Verticillium albo-atrum. J Plant Pathol 91(3):745–750. doi:10.4454/jpp.v91i3.573

    CAS  Google Scholar 

  • Köhler GA, Brenot A, Haas-Stapleton E, Agabian N, Deva R, Nigam S (2006) Phospholipase A2 and phospholipase B activities in fungi. Biochim Biophys Acta 1761(11):1391–1399. doi:10.1016/j.bbalip.2006.09.011

    PubMed Central  PubMed  Google Scholar 

  • Koike M, Fujita M, Nagao H, Ohshima S (1996) Random amplified polymorphic DNA analysis of Japanese isolates of Verticillium dahliae and V. albo-atrum. Plant Dis 80(11):1224–1227. doi:10.1094/PD-80-1224

    CAS  Google Scholar 

  • Kronstad J, De Maria A, Funnell D, Laidlaw RD, Lee N, Moniz de Sá M, Ramesh M (1998) Signaling via cAMP in fungi: Interconnections with mitogen-activated protein kinase pathways. Arch Microbiol 170(6):395–404. doi:10.1007/s002030050659

    PubMed  CAS  Google Scholar 

  • Latunde-Dada AO (2001) Colletotrichum: tales of forcible entry, stealth, transient confinement and breakout. Mol Plant Pathol 2(4):187–198. doi:10.1046/j.1464-6722.2001.00069.x

    PubMed  CAS  Google Scholar 

  • Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Güldener U, Münsterkötter M, Moore R, Kahmann R, Bakkeren G, Schirawski J (2012) Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24(5):1733–1745. doi:10.1105/tpc.112.097261

    PubMed Central  PubMed  CAS  Google Scholar 

  • Leuthner B, Aichinger C, Oehmen E, Koopmann E, Müller O, Müller P, Kahmann R, Bölker M, Schreier PH (2005) A H2O2-producing glyoxal oxidase is required for filamentous growth and pathogenicity in Ustilago maydis. Mol Genet Genomics 272(6):639–650. doi:10.1007/s00438-004-1085-6

    PubMed  CAS  Google Scholar 

  • López-Berges MS, Capilla J, Turrà D, Schafferer L, Matthijs S, Jöchl C, Cornelis P, Guarro J, Haas H, Di Pietro A (2012) HapX-mediated iron homeostasis is essential for rhizosphere competence and virulence of the soilborne pathogen Fusarium oxysporum. Plant Cell 24(9):3805–3822. doi:10.1105/tpc.112.098624

    PubMed Central  PubMed  Google Scholar 

  • Ma L-J, van der Does HC, Borkovich KA, Coleman JJ, Daboussi M-J, Di Pietro A, Dufresne M, Freitag M, Grabherr M, Henrissat B, Houterman PM, Kang S, Shim W-B, Woloshuk C, Xie X, Xu J-R, Antoniw J, Baker SE, Bluhm BH, Breakspear A, Brown DW, Butchko RAE, Chapman S, Coulson R, Coutinho PM, Danchin EGJ, Diener A, Gale LR, Gardiner DM, Goff S, Hammond-Kosack KE, Hilburn K, Hua-Van A, Jonkers W, Kazan K, Kodira CD, Koehrsen M, Kumar L, Lee Y-H, Li L, Manners JM, Miranda-Saavedra D, Mukherjee M, Park G, Park J, Park S-Y, Proctor RH, Regev A, Ruiz-Roldan MC, Sain D, Sakthikumar S, Sykes S, Schwartz DC, Turgeon BG, Wapinski I, Yoder O, Young S, Zeng Q, Zhou S, Galagan J, Cuomo CA, Kistler HC, Rep M (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464(7287):367–373. doi:10.1038/nature08850

    PubMed Central  PubMed  CAS  Google Scholar 

  • Marshall R, Kombrink A, Motteram J, Loza-Reyes E, Lucas J, Hammond-Kosack KE, Thomma BPHJ, Rudd JJ (2011) Analysis of two in planta expressed LysM effector homologs from the fungus Mycosphaerella graminicola reveals novel functional properties and varying contributions to virulence on wheat. Plant Physiol 156(2):756–769. doi:10.1104/pp.111.176347

    PubMed Central  PubMed  CAS  Google Scholar 

  • Martinez D, Berka RM, Henrissat B, Saloheimo M, Arvas M, Baker SE, Chapman J, Chertkov O, Coutinho PM, Cullen D, Danchin EGJ, Grigoriev IV, Harris P, Jackson M, Kubicek CP, Han CS, Ho I, Larrondo LF, de Leon AL, Magnuson JK, Merino S, Misra M, Nelson B, Putnam N, Robbertse B, Salamov AA, Schmoll M, Terry A, Thayer N, Westerholm-Parvinen A, Schoch CL, Yao J, Barabote R, Nelson MA, Detter C, Bruce D, Kuske CR, Xie G, Richardson P, Rokhsar DS, Lucas SM, Rubin EM, Dunn-Coleman N, Ward M, Brettin TS (2008) Genome sequencing and analysis of the biomass-degrading fungus Trichoderma reesei (syn. Hypocrea jecorina). Nat Biotechnol 26(5):553–560. doi:10.1038/nbt1403

    PubMed  CAS  Google Scholar 

  • Martinez D, Larrondo LF, Putnam N, Gelpke MDS, Huang K, Chapman J, Helfenbein KG, Ramaiya P, Detter JC, Larimer F, Coutinho PM, Henrissat B, Berka R, Cullen D, Rokhsar D (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22(6):695–700. doi:10.1038/nbt967

    PubMed  CAS  Google Scholar 

  • Maruthachalam K, Atallah ZK, Vallad GE, Klosterman SJ, Hayes RJ, Davis RM, Subbarao KV (2010) Molecular variation among isolates of Verticillium dahliae and polymerase chain reaction-based differentiation of races. Phytopathology 100(11):1222–1230. doi:10.1094/phyto-04-10-0122

    PubMed  CAS  Google Scholar 

  • Maruthachalam K, Klosterman SJ, Kang S, Hayes RJ, Subbarao KV (2011) Identification of pathogenicity-related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis. Mol Biotechnol 49(3):209–221. doi:10.1007/s12033-011-9392-8

    PubMed Central  PubMed  CAS  Google Scholar 

  • McDonald BA, Linde C (2002) Pathogen population genetics, evolutionary potential, and durable resistance. Annu Rev Phytopathol 40:349–379. doi:10.1146/annurev.phyto.40.120501.101443

    PubMed  CAS  Google Scholar 

  • Mehrabi R, Bahkali AH, Abd-Elsalam KA, Moslem M, Ben M’Barek S, Gohari AM, Jashni MK, Stergiopoulos I, Kema GHJ, de Wit PJGM (2011) Horizontal gene and chromosome transfer in plant pathogenic fungi affecting host range. FEMS Microbiol Rev 35(3):542–554. doi:10.1111/j.1574-6976.2010.00263.x

    PubMed  CAS  Google Scholar 

  • Mehrabi R, Zhao X, Kim Y, Xu J-R (2009) The cAMP signaling and MAP kinase pathways in plant pathogenic fungi. In: Deising HB (ed) Plant relationships. The mycota, vol 5. Springer, Berlin, pp 157–172. doi:10.1007/978-3-540-87407-2_8

  • Mentlak TA, Kombrink A, Shinya T, Ryder LS, Otomo I, Saitoh H, Terauchi R, Nishizawa Y, Shibuya N, Thomma BPHJ, Talbot NJ (2012) Effector-mediated suppression of chitin-triggered immunity by Magnaporthe oryzae is necessary for rice blast disease. Plant Cell 24(1):322–335. doi:10.1105/tpc.111.092957

    PubMed Central  PubMed  CAS  Google Scholar 

  • Michielse CB, Becker M, Heller J, Moraga J, Collado IG, Tudzynski P (2011) The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol Plant-Microbe Interact 24(9):1074–1085. doi:10.1094/mpmi-01-11-0007

    PubMed  CAS  Google Scholar 

  • Michielse CB, Rep M (2009) Pathogen profile update: Fusarium oxysporum. Mol Plant Pathol 10(3):311–324. doi:10.1111/j.1364-3703.2009.00538.x

    PubMed  CAS  Google Scholar 

  • Michielse CB, van Wijk R, Reijnen L, Manders EMM, Boas S, Olivain C, Alabouvette C, Rep M (2009) The nuclear protein Sge1 of Fusarium oxysporum is required for parasitic growth. PLoS Path 5(10):e1000637. doi:10.1371/journal.ppat.1000637

    Google Scholar 

  • Mieczkowski PA, Lemoine FJ, Petes TD (2006) Recombination between retrotransposons as a source of chromosome rearrangements in the yeast Saccharomyces cerevisiae. DNA Repair 5(9–10):1010–1020. doi:10.1016/j.dnarep.2006.05.027

    PubMed  CAS  Google Scholar 

  • Milgroom MG (1996) Recombination and the multilocus structure of fungal populations. Annu Rev Phytopathol 34:457–477. doi:10.1146/annurev.phyto.34.1.457

    PubMed  CAS  Google Scholar 

  • Nazar RN, Hu X, Schmidt J, Culham D, Robb J (1991) Potential use of PCR-amplified ribosomal intergenic sequences in detection and differentiation of Verticillium wilt pathogens. Physiol Mol Plant Pathol 39(1):1–11. doi:10.1016/0885-5765(91)90027-F

    CAS  Google Scholar 

  • Nguyen QB, Kadotani N, Kasahara S, Tosa Y, Mayama S, Nakayashiki H (2008) Systematic functional analysis of calcium-signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68(6):1348–1365. doi:10.1111/j.1365-2958.2008.06242.x

    PubMed  CAS  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S, Amyotte SG, Kleemann J, Torres MF, Damm U, Buiate EA, Epstein L, Alkan N, Altmuller J, Alvarado-Balderrama L, Bauser CA, Becker C, Birren BW, Chen Z, Choi J, Crouch JA, Duvick JP, Farman MA, Gan P, Heiman D, Henrissat B, Howard RJ, Kabbage M, Koch C, Kracher B, Kubo Y, Law AD, Lebrun M-H, Lee Y-H, Miyara I, Moore N, Neumann U, Nordstrom K, Panaccione DG, Panstruga R, Place M, Proctor RH, Prusky D, Rech G, Reinhardt R, Rollins JA, Rounsley S, Schardl CL, Schwartz DC, Shenoy N, Shirasu K, Sikhakolli UR, Stuber K, Sukno SA, Sweigard JA, Takano Y, Takahara H, Trail F, van der Does HC, Voll LM, Will I, Young S, Zeng Q, Zhang J, Zhou S, Dickman MB, Schulze-Lefert P, Ver Loren van Themaat E, Ma L-J, Vaillancourt LJ (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44(9):1060–1065. doi:10.1038/ng.2372

    PubMed  Google Scholar 

  • Oliver RP, Solomon PS (2008) Recent fungal diseases of crop plants: Is lateral gene transfer a common theme? Mol Plant-Microbe Interact 21(3):287–293. doi:10.1094/MPMI-21-3-0287

    PubMed  CAS  Google Scholar 

  • Olmedo-Monfil V, Cortés-Penagos C, Herrera-Estrella A (2004) Three decades of fungal transformation. In: Balbás P, Lorence A (eds) Recombinant gene expression. Methods in Molecular Biology, vol 267. Humana Press, Totowa, pp 297–313. doi:10.1385/1-59259-774-2:297

  • Ottmann C, Luberacki B, Küfner I, Koch W, Brunner F, Weyand M, Mattinen L, Pirhonen M, Anderluh G, Seitz HU, Nürnberger T, Oecking C (2009) A common toxin fold mediates microbial attack and plant defense. Proc Natl Acad Sci U S A 106(25):10359–10364. doi:10.1073/pnas.0902362106

    PubMed Central  PubMed  CAS  Google Scholar 

  • Palmer JM, Keller NP (2010) Secondary metabolism in fungi: does chromosomal location matter? Curr Opin Microbiol 13(4):431–436. doi:10.1016/j.mib.2010.04.008

    PubMed Central  PubMed  CAS  Google Scholar 

  • Pantou MP, Typas MA (2005) Electrophoretic karyotype and gene mapping of the vascular wilt fungus Verticillium dahliae. FEMS Microbiol Lett 245(2):213–220. doi:10.1016/j.femsle.2005.03.011

    PubMed  CAS  Google Scholar 

  • Parra G, Blanco E, Guigó R (2000) GeneID in Drosophila. Genome Res 10(4):511–515. doi:10.1101/gr.10.4.511

    PubMed Central  PubMed  CAS  Google Scholar 

  • Paz Z, García-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montañez L, Gold SE (2011) One step construction of Agrobacterium-recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol 48(7):677–684. doi:10.1016/j.fgb.2011.02.003

    PubMed  CAS  Google Scholar 

  • Pegg GF, Brady BL (2002) Verticillium wilts. CABI Publishing, Wallingford

    Google Scholar 

  • Pemberton CL, Salmond GPC (2004) The Nep1-like proteins—a growing family of microbial elicitors of plant necrosis. Mol Plant Pathol 5(4):353–359. doi:10.1111/j.1364-3703.2004.00235.x

    PubMed  CAS  Google Scholar 

  • Pietro A, Roncero MIG, Ruiz-Roldán MC (2009) From tools of survival to weapons of destruction: The role of cell wall-degrading enzymes in plant infection. In: Deising HB (ed) Plant relationships. The Mycota, vol 5. Springer, Berlin, pp 181–200. doi:10.1007/978-3-540-87407-2_10

  • Platt HW, MacLean V, Mahuku G, Maxwell P (2000) Verticillium wilt of potatoes caused by three Verticillium species. In: Tjamos EC, Rowe RC, Heale JB, Fravel DR (eds) Advances in Verticillium: research and disease management. APS Press, St. Paul, pp 59–62

    Google Scholar 

  • Puhalla JE (1979) Classification of isolates of Verticillium dahliae based on heterokaryon incompatibility. Phytopathology 69(11):1186–1189. doi:10.1094/Phyto-69-118

    Google Scholar 

  • Puhalla JE, Hummel M (1983) Vegetative compatibility groups within Verticillium dahliae. Phytopathology 73(9):1305–1308. doi:10.1094/Phyto-73-1305

    Google Scholar 

  • Qin Q-M, Vallad GE, Subbarao KV (2008) Characterization of Verticillium dahliae and V. tricorpus isolates from lettuce and artichoke. Plant Dis 92(1):69–77. doi:10.1094/PDIS-92-1-0069

    CAS  Google Scholar 

  • Qin QM, Vallad GE, Wu BM, Subbarao KV (2006) Phylogenetic analyses of phytopathogenic isolates of Verticillium spp. Phytopathology 96(6):582–592. doi:10.1094/PHYTO-96-0582

    PubMed  CAS  Google Scholar 

  • Qutob D, Kemmerling B, Brunner F, Küfner I, Engelhardt S, Gust AA, Luberacki B, Seitz HU, Stahl D, Rauhut T, Glawischnig E, Schween G, Lacombe B, Watanabe N, Lam E, Schlichting R, Scheel D, Nau K, Dodt G, Hubert D, Gijzen M, Nürnberger T (2006) Phytotoxicity and innate immune responses induced by Nep1-like proteins. Plant Cell 18(12):3721–3744. doi:10.1105/tpc.106.044180

    PubMed Central  PubMed  CAS  Google Scholar 

  • RadiÅ¡ek S, JakÅ¡e J, Javornik B (2006) Genetic variability and virulence among Verticillium albo-atrum isolates from hop. Eur J Plant Pathol 116(4):301–314. doi:10.1007/s10658-006-9061-0

    Google Scholar 

  • Raffaele S, Farrer RA, Cano LM, Studholme DJ, MacLean D, Thines M, Jiang RHY, Zody MC, Kunjeti SG, Donofrio NM, Meyers BC, Nusbaum C, Kamoun S (2010) Genome evolution following host jumps in the Irish potato famine pathogen lineage. Science 330(6010):1540–1543. doi:10.1126/science.1193070

    PubMed  CAS  Google Scholar 

  • Ramos B, González-Melendi P, Sánchez-Vallet A, Sánchez-Rodríguez C, López G, Molina A (2013) Functional genomics tools to decipher the pathogenicity mechanisms of the necrotrophic fungus Plectosphaerella cucumerina in Arabidopsis thaliana. Mol Plant Pathol 14(1):44–57. doi:10.1111/j.1364-3703.2012.00826.x

    PubMed  CAS  Google Scholar 

  • Rauyaree P, Ospina-Giraldo M, Kang S, Bhat R, Subbarao K, Grant S, Dobinson K (2005) Mutations in VMK1, a mitogen-activated protein kinase gene, affect microsclerotia formation and pathogenicity in Verticillium dahliae. Curr Genet 48(2):109–116. doi:10.1007/s00294-005-0586-0

    PubMed  CAS  Google Scholar 

  • Rep M, Kistler HC (2010) The genomic organization of plant pathogenicity in Fusarium species. Curr Opin Plant Biol 13(4):420–426. doi:10.1016/j.pbi.2010.04.004

    PubMed  CAS  Google Scholar 

  • Roman DG, Dancis A, Anderson GJ, Klausner RD (1993) The fission yeast ferric reductase gene frp1+ is required for ferric iron uptake and encodes a protein that is homologous to the gp91-phox subunit of the human NADPH phagocyte oxidoreductase. Mol Cell Biol 13(7):4342–4350. doi:10.1128/mcb.13.7.4342

    PubMed Central  PubMed  CAS  Google Scholar 

  • Roper MC, Greve LC, Warren JG, Labavitch JM, Kirkpatrick BC (2007) Xylella fastidiosa requires polygalacturonase for colonization and pathogenicity in Vitis vinifera grapevines. Mol Plant-Microbe Interact 20(4):411–419. doi:10.1094/MPMI-20-4-0411

    PubMed  CAS  Google Scholar 

  • Rosewich UL, Kistler HC (2000) Role of horizontal gene transfer in the evolution of fungi. Annu Rev Phytopathol 38:325–363. doi:10.1146/annurev.phyto.38.1.325

    PubMed  CAS  Google Scholar 

  • Rouxel T, Grandaubert J, Hane JK, Hoede C, van de Wouw AP, Couloux A, Dominguez V, Anthouard V, Bally P, Bourras S, Cozijnsen AJ, Ciuffetti LM, Degrave A, Dilmaghani A, Duret L, Fudal I, Goodwin SB, Gout L, Glaser N, Linglin J, Kema GHJ, Lapalu N, Lawrence CB, May K, Meyer M, Ollivier B, Poulain J, Schoch CL, Simon A, Spatafora JW, Stachowiak A, Turgeon BG, Tyler BM, Vincent D, Weissenbach J, Amselem J, Quesneville H, Oliver RP, Wincker P, Balesdent M-H, Howlett BJ (2011) Effector diversification within compartments of the Leptosphaeria maculans genome affected by Repeat-Induced Point mutations. Nat Commun 2(202):1–10. doi:10.1038/ncomms1189

    Google Scholar 

  • Rowe RC (1995) Recent progress in understanding relationships between Verticillium species and subspecific groups. Phytoparasitica 23(1):31–38. doi:10.1007/BF02980394

    Google Scholar 

  • Rowe RC, Powelson ML (2002) Potato early dying: Management challenges in a changing production environment. Plant Dis 86(11):1184–1193. doi:10.1094/pdis.2002.86.11.1184

    Google Scholar 

  • Rydholm C, Dyer PS, Lutzoni F (2007) DNA sequence characterization and molecular evolution of MAT1 and MAT2 mating-type loci of the self-compatible ascomycete mold Neosartorya fischeri. Eukaryot Cell 6(5):868–874. doi:10.1128/EC.00319-06

    PubMed Central  PubMed  CAS  Google Scholar 

  • Salamov AA, Solovyev VV (2000) Ab initio gene finding in Drosophila genomic DNA. Genome Res 10(4):516–522. doi:10.1101/gr.10.4.516

    PubMed Central  PubMed  CAS  Google Scholar 

  • Santhanam P (2012) Random insertional mutagenesis in fungal genomes to identify virulence factors. In: Bolton MD, Thomma BPHJ (eds) Plant fungal pathogens. Methods in molecular biology, vol 835. Humana Press, Totowa, pp 509–517. doi:10.1007/978-1-61779-501-5_31

  • Santhanam P, Thomma BPHJ (2013) Verticillium dahliae Sge1 differentially regulates expression of candidate effector genes. Mol Plant-Microbe Interact 26(2):249–256. doi:10.1094/mpmi-08-12-0198-r

    PubMed  CAS  Google Scholar 

  • Santhanam P, van Esse HP, Albert I, Faino L, Nürnberger T, Thomma BPHJ (2013) Evidence for functional diversification within a fungal NEP1-like protein family. Mol Plant-Microbe Interact 26(3):278–286. doi:10.1094/mpmi-09-12-0222-r

    PubMed  CAS  Google Scholar 

  • Schaible L, Cannon OS, Waddoups V (1951) Inheritance of resistance to Verticillium wilt in a tomato cross. Phytopathology 41(11):986–990

    Google Scholar 

  • Schwartz DC, Li X, Hernandez LI, Ramnarain SP, Huff EJ, Wang YK (1993) Ordered restriction maps of Saccharomyces cerevisiae chromosomes constructed by optical mapping. Science 262(5130):110–114. doi:10.1126/science.8211116

    PubMed  CAS  Google Scholar 

  • Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9(5):615–629. doi:10.1111/j.1461-0248.2006.00889.x

    PubMed  Google Scholar 

  • Soanes DM, Alam I, Cornell M, Wong HM, Hedeler C, Paton NW, Rattray M, Hubbard SJ, Oliver SG, Talbot NJ (2008) Comparative genome analysis of filamentous fungi reveals gene family expansions associated with fungal pathogenesis. PLoS ONE 3(6):e2300. doi:10.1371/journal.pone.0002300

    PubMed Central  PubMed  Google Scholar 

  • Stahl DJ, Schäfer W (1992) Cutinase is not required for fungal pathogenicity on pea. Plant Cell 4(6):621–629. doi:10.1105/tpc.4.6.621

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stukenbrock EH, Christiansen FB, Hansen TT, Dutheil JY, Schierup MH (2012) Fusion of two divergent fungal individuals led to the recent emergence of a unique widespread pathogen species. Proc Natl Acad Sci U S A 109(27):10954–10959. doi:10.1073/pnas.1201403109

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stukenbrock EH, Jørgensen FG, Zala M, Hansen TT, McDonald BA, Schierup MH (2010) Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet 6(12):e1001189. doi:10.1371/journal.pgen.1001189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Subbarao KV, Chassot A, Gordon TR, Hubbard JC, Bonello P, Mullin R, Okamoto D, Davis RM, Koike ST (1995) Genetic relationships and cross pathogenicities of Verticillium dahliae isolates from cauliflower and other crops. Phytopathology 85(10):1105–1112. doi:10.1094/Phyto-85-1105

    Google Scholar 

  • Subbarao KV, Hubbard JC, Greathead AS, Spencer GA (1997) Verticillium wilt. In: Davis RM, Subbarao KV, Raid RN, Kurtz EA (eds) Compendium of lettuce diseases. The American Phytopathological Society, St. Paul, pp 26–27

    Google Scholar 

  • Sunnucks P (2000) Efficient genetic markers for population biology. Trends Ecol Evol 15(5):199–203. doi:10.1016/S0169-5347(00)01825-5

    PubMed  Google Scholar 

  • Ter-Hovhannisyan V, Lomsadze A, Chernoff YO, Borodovsky M (2008) Gene prediction in novel fungal genomes using an ab initio algorithm with unsupervised training. Genome Res 18(12):1979–1990. doi:10.1101/gr.081612.108

    PubMed Central  PubMed  CAS  Google Scholar 

  • Thomma BPHJ, Nürnberger T, Joosten MHAJ (2011) Of PAMPs and effectors: the blurred PTI-ETI dichotomy. Plant Cell 23(1):4–15. doi:10.1105/tpc.110.082602

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tran VT, Braus-Stromeyer S, Timpner C, Braus G (2013) Molecular diagnosis to discriminate pathogen and apathogen species of the hybrid Verticillium longisporum on the oilseed crop Brassica napus. Appl Microbiol Biotechnol 97(10):4467--4483. doi:10.1007/s00253-012-4530-1

  • Turgeon BG, Christiansen SK, Yoder OC (1993) Mating type genes in ascomycetes and their imperfect relatives. In: Reynolds DR, Taylor JW (eds) The fungal holomorph: mitotic, meiotic and pleomorphic speciation in fungal systematics. CAB International, Wallingford, pp 199–215

    Google Scholar 

  • Turgeon BG, Lu S-W (2000) Evolution of host specific virulence in Cochliobolus heterostrophus. In: Kronstad JW (ed) Fungal pathology. Kluwer Academic Publishers, Boston, pp 93–126. doi:10.1007/978-94-015-9546-9_4

  • Typas MA, Heale JB (1976) Heterokaryosis and role of cytoplasmic inheritance in dark resting structure formation in Verticillium spp. Mol Gen Genet 146(1):17–26. doi:10.1007/BF00267978

    Google Scholar 

  • Tzima A, Paplomatas EJ, Rauyaree P, Kang S (2010) Roles of the catalytic subunit of cAMP-dependent protein kinase A in virulence and development of the soilborne plant pathogen Verticillium dahliae. Fungal Genet Biol 47(5):406–415. doi:10.1016/j.fgb.2010.01.007

    PubMed  CAS  Google Scholar 

  • Tzima AK, Paplomatas EJ, Rauyaree P, Ospina-Giraldo MD, Kang S (2011) VdSNF1, the sucrose nonfermenting protein kinase gene of Verticillium dahliae, is required for virulence and expression of genes involved in cell-wall degradation. Mol Plant-Microbe Interact 24(1):129–142. doi:10.1094/mpmi-09-09-0217

    PubMed  CAS  Google Scholar 

  • Tzima AK, Paplomatas EJ, Tsitsigiannis DI, Kang S (2012) The G protein beta subunit controls virulence and multiple growth- and development-related traits in Verticillium dahliae. Fungal Genet Biol 49(4):271–283. doi:10.1016/j.fgb.2012.02.005

    PubMed  CAS  Google Scholar 

  • Usami T, Amemiya Y, Shishido M (2001) Analyses of transcriptional region found in a tomato pathotype-specific DNA fragment of Verticillium dahliae. Soil Microorgan 55(1):11–20

    Google Scholar 

  • Usami T, Ishigaki S, Takashina H, Matsubara Y, Amemiya Y (2007) Cloning of DNA fragments specific to the pathotype and race of Verticillium dahliae. J Gen Plant Pathol 73(2):89–95. doi:10.1007/s10327-006-0334-4

    CAS  Google Scholar 

  • Usami T, Itoh M, Amemiya Y (2008) Mating type gene MAT1-2-1 is common among Japanese isolates of Verticillium dahliae. Physiol Mol Plant Pathol 73(6):133–137. doi:10.1016/j.pmpp.2009.04.002

    CAS  Google Scholar 

  • Usami T, Itoh M, Amemiya Y (2009) Asexual fungus Verticillium dahliae is potentially heterothallic. J Gen Plant Pathol 75(6):422–427. doi:10.1007/s10327-009-0197-6

    CAS  Google Scholar 

  • Usami T, Kanto T, Inderbitzin P, Itoh M, Kisaki G, Ebihara Y, Suda W, Amemiya Y, Subbarao KV (2011) Verticillium tricorpus causing lettuce wilt in Japan differs genetically from California lettuce isolates. J Gen Plant Pathol 77(1):17–23. doi:10.1007/s10327-010-0282-x

    Google Scholar 

  • Vallad GE, Qin Q-M, Grube R, Hayes RJ, Subbarao KV (2006) Characterization of race-specific interactions among isolates of Verticillium dahliae pathogenic on lettuce. Phytopathology 96(12):1380–1387. doi:10.1094/PHYTO-96-1380

    PubMed  CAS  Google Scholar 

  • Vallad GE, Subbarao KV (2008) Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahliae. Phytopathology 98(8):871–885. doi:10.1094/PHYTO-98-8-0871

    PubMed  CAS  Google Scholar 

  • Van de Wouw AP, Cozijnsen AJ, Hane JK, Brunner PC, McDonald BA, Oliver RP, Howlett BJ (2010) Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Path 6(11):e1001180. doi:10.1371/journal.ppat.1001180

    Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492. doi:10.1007/s00253-011-3473-2

    PubMed Central  PubMed  CAS  Google Scholar 

  • van den Burg HA, Harrison SJ, Joosten MHAJ, Vervoort J, de Wit PJGM (2006) Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant-Microbe Interact 19(12):1420–1430. doi:10.1094/mpmi-19-1420

    PubMed  Google Scholar 

  • van Esse HP, Bolton MD, Stergiopoulos I, de Wit PJGM, Thomma BPHJ (2007) The chitin-binding Cladosporium fulvum effector protein Avr4 is a virulence factor. Mol Plant-Microbe Interact 20(9):1092–1101. doi:10.1094/mpmi-20-9-1092

    PubMed  Google Scholar 

  • Walker J (1990) Verticillium albo-atrum in Australia: A case study of information confusion in plant pathology. Australas Plant Path 19(3):57–69. doi:10.1071/APP9900057

    Google Scholar 

  • Wang J-Y, Cai Y, Gou J-Y, Mao Y-B, Xu Y-H, Jiang W-H, Chen X-Y (2004) VdNEP, an elicitor from Verticillium dahliae, induces cotton plant wilting. Appl Environ Microbiol 70(8):4989–4995. doi:10.1128/aem.70.8.4989-4995.2004

    PubMed Central  PubMed  CAS  Google Scholar 

  • Weld RJ, Plummer KM, Carpenter MA, Ridgway HJ (2006) Approaches to functional genomics in filamentous fungi. Cell Res 16:31–44. doi:10.1038/sj.cr.7310006

    PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8(12):973–982. doi:10.1038/nrg2165

    PubMed  CAS  Google Scholar 

  • Wilhelm S (1955) Longevity of the Verticillium wilt fungus in the laboratory and field. Phytopathology 45(3):180–181

    Google Scholar 

  • Wilhelm S, Paulus AO (1980) How soil fumigation benefits the California strawberry industry. Plant Dis 64(3):264–270. doi:10.1094/PD-64-264

    Google Scholar 

  • Xu JR (2000) MAP kinases in fungal pathogens. Fungal Genet Biol 31(3):137–152. doi:10.1006/fgbi.2000.1237

    PubMed  CAS  Google Scholar 

  • Xu JR, Hamer JE (1996) MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev 10(21):2696–2706. doi:10.1101/gad.10.21.2696

    PubMed  CAS  Google Scholar 

  • Zare R, Gams W, Starink-Willemse M, Summerbell RC (2007) Gibellulopsis, a suitable genus for Verticillium nigrescens, and Musicillium, a new genus for V. theobromae. Nova Hedwigia 85(3–4):463–489. doi:10.1127/0029-5035/2007/0085-0463

    Google Scholar 

  • Zeise K, von Tiedemann A (2002) Application of RAPD-PCR for virulence type analysis within Verticillium dahliae and V. longisporum. J Phytopathol 150(10):557–563. doi:10.1046/j.1439-0434.2002.00799.x

  • Zhang J (2003) Evolution by gene duplication: an update. Trends Ecol Evol 18(6):292–298. doi:10.1016/S0169-5347(03)00033-8

    Google Scholar 

  • Zhang N, Castlebury LA, Miller AN, Huhndorf SM, Schoch CL, Seifert KA, Rossman AY, Rogers JD, Kohlmeyer J, Volkmann-Kohlmeyer B, Sung G-H (2006) An overview of the systematics of the Sordariomycetes based on a four-gene phylogeny. Mycologia 98(6):1076–1087. doi:10.3852/mycologia.98.6.1076

    PubMed  CAS  Google Scholar 

  • Zhou B-J, Jia P-S, Gao F, Guo H-S (2012) Molecular characterization and functional analysis of a necrosis- and ethylene-inducing, protein-encoding gene family from Verticillium dahliae. Mol Plant-Microbe Interact 25(7):964–975. doi:10.1094/mpmi-12-11-0319

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna V. Subbarao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Inderbitzin, P., Thomma, B.P.H.J., Klosterman, S.J., Subbarao, K.V. (2014). Verticillium alfalfae and V . dahliae, Agents of Verticillium Wilt Diseases. In: Dean, R., Lichens-Park, A., Kole, C. (eds) Genomics of Plant-Associated Fungi and Oomycetes: Dicot Pathogens. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44056-8_4

Download citation

Publish with us

Policies and ethics