Advertisement

Facilitating the Fungus: Insights from the Genome of the Rice Blast Fungus, Magnaporthe Oryzae

  • Nicole M. DonofrioEmail author
  • Jinnan Hu
  • Thomas K. Mitchell
  • Richard A. Wilson
Chapter

Abstract

Magnaporthe oryzae is a filamentous, Ascomycete fungus and causal agent of the rice blast disease. As one of the most economically important plant pathogenic fungi globally, M. oryzae can kill enough rice to feed an estimated 60 million people per year, and repeated epidemics throughout the course of history dictates that it will continue to cause devastation to one of the world’s most important food sources. In 2005, the M. oryzae genome sequence was released in a landmark publication, as it was the first plant pathogenic fungus to be sequenced. In this chapter, we examine many aspects of genome-enabled research including host adaptation , identification of avirulence genes , and the use of reverse genetics to provide insight into gene functions. We review important discoveries using next-generation sequencing platforms such as RNA-Seq , and discuss how proteomics have confirmed or provided additional information about linkages between biochemical pathways involved in nitrogen regulation, reactive oxygen species production, and virulence. The end of the Chapter explores future challenges and potential control measures; all of which are dependent upon the current genome sequences available for different strains of this fungus, as well as the hundreds of field strains that are currently awaiting to be sequenced. Harnessing the power of comparative genome analyses will provide critical information on how field isolates change, and will subsequently inform growers and breeders on the most appropriate rice cultivars to deploy.

Keywords

Biochemical Pathway Rice Blast Field Isolate Fungal Genome Rice Blast Fungus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amselem J, Cuomo CA, van Kan JAL et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230PubMedCentralPubMedCrossRefGoogle Scholar
  2. Betts MF, Tucker SL, Galadima N et al (2007) Development of a high-throughput transformation system for insertional mutagenesis in Magnaporthe oryzae. Fungal Genet Biol 44:1035–1049PubMedCrossRefGoogle Scholar
  3. Bhadauria V, Wang LX, Peng YL (2010) Proteomic changes associated with deletion of the Magnaporthe oryzae conidial morphology-regulating gene COM1. Biol Direct 5:61PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bhadauria V, Banniza S, Vandenberg A et al (2012) Peroxisomal alanine: glyoxylate aminotransferase AGT1 is indispensable for appressorium function of the rice blast pathogen, Magnaporthe oryzae. PLoS One 7:e36266PubMedCentralPubMedCrossRefGoogle Scholar
  5. Bohnert HU, Fudal I, Dioh W et al (2004) A putative polyketide synthase peptide synthetase from Magnaporthe grisea signals pathogen attack to resistant rice. Plant Cell 16:2499–2513PubMedCentralPubMedCrossRefGoogle Scholar
  6. Broad Institute (2010) Version 8 of the M. oryzae genome assembly. The fungal genome initiative. http://www.broadinstitute.org/annotation/genome/magnaporthe_grisea/MultiHome.html. Accessed 15 Sept 2013
  7. Chi MH, Park SY, Kim S et al (2009) A novel pathogenicity gene is required in the rice blast fungus to suppress the basal defenses of the host. PLoS Pathog 5:e1000401PubMedCentralPubMedCrossRefGoogle Scholar
  8. Choi JH, Kim Y, Lee YH (2009) Functional analysis of MCNA, a gene encoding a catalytic subunit of calcineurin, in the rice blast fungus Magnaporthe oryzae. J Microbiol Biotechnol 19:11–16PubMedGoogle Scholar
  9. Choi J, Park J, Jeon J et al (2007) Genome-wide analysis of T-DNA integration into the chromosomes of Magnaporthe oryzae. Mol Microbiol 66:371–382PubMedCentralPubMedCrossRefGoogle Scholar
  10. Chuma I, Isobe C, Hotta Y et al (2011) Multiple Translocation of the AVR-Pita effector gene among chromosomes of the rice blast fungus Magnaporthe oryzae and related species. PLoS Pathog 7:e1002147PubMedCentralPubMedCrossRefGoogle Scholar
  11. Chumley FG, Valent B (1990) Genetic analysis of melanin-deficient, nonpathogenic mutants of Magnaporthe grisea. Mol Plant Microbe Interact 3:135–143CrossRefGoogle Scholar
  12. Coleman JJ, Rounsley SD, Rodriguez-Carres M et al (2009) The genome of Nectria haematococca: contribution of supernumerary chromosomes to gene expansion. PLoS Genet 5:e1000618PubMedCentralPubMedCrossRefGoogle Scholar
  13. Couch BC, Kohn LM (2002) A multilocus gene genealogy concordant with host preference indicates segregation of a new species, Magnaporthe oryzae, from M. grisea. Mycologia 94:683–693PubMedCrossRefGoogle Scholar
  14. Crawford MS, Chumley FG, Weaver CG et al (1986) Characterization of the heterokaryotic and vegetative diploid phases of Magnaporthe grisea. Genetics 114:1111–1129PubMedCentralPubMedGoogle Scholar
  15. Dean RA, Talbot NJ, Ebbole DJ et al (2005) The genome sequence of the rice blast fungus Magnaporthe grisea. Nature 434:980–986PubMedCrossRefGoogle Scholar
  16. Donofrio NM, Oh Y, Lundy R et al (2006) Global gene expression during nitrogen starvation in the rice blast fungus, Magnaporthe grisea. Fungal Genet Biol 43:605–617PubMedCrossRefGoogle Scholar
  17. Duplessis S, Cuomo CA, Lin YC et al (2011) Obligate biotrophy features unraveled by the genomic analysis of rust fungi. Proc Natl Acad Sci U S A 108:9166–9171PubMedCentralPubMedCrossRefGoogle Scholar
  18. Farman ML (2007) Telomeres in the rice blast fungus Magnaporthe oryzae: the world of the end as we know it. FEMS Microbiol Lett 273:125–132PubMedCrossRefGoogle Scholar
  19. Farman ML, Leong SA (1998) Chromosome walking to the AVR1-CO39 avirulence gene of Magnaporthe grisea: discrepancy between the physical and genetic maps. Genetics 150:1049–1058PubMedCentralPubMedGoogle Scholar
  20. Fernandez J, Wright JD, Hartline D et al (2012) Principles of carbon catabolite repression in the rice blast fungus: Tps1, Nmr1-3, and a MATE-family pump regulate glucose metabolism during infection. PLoS Genet 8:e1002673PubMedCentralPubMedCrossRefGoogle Scholar
  21. Fernandez J, Yang KT, Cornwell KM et al (2013) Growth in rice cells requires de novo purine biosynthesis by the blast fungus Magnaporthe oryzae. Sci Rep 3. doi: 10.1038/srep02398
  22. Franck WL, Gokce E, Oh Y, Muddiman DC, Dean RA (2013) Temporal analysis of the magnaporthe oryzae proteome during conidial germination and cyclic AMP (cAMP)-mediated appressorium formation. Mol Cell Proteomics 8:2249--2265. doi:  10.1074/mcp.M112.025874
  23. Fire A, Xu S, Montgomery MK (1998) Potent and specific genetic interference by double stranded RNA in Caenorhabditis elegans. Nature 391:806–811PubMedCrossRefGoogle Scholar
  24. Franscheschetti M, Bueno E, Wilson RA et al (2011) Fungal virulence and development is regulated by alternative pre-mRNA 3’ end processing in Magnaporthe oryzae. PLoS Pathog 7:e1002441CrossRefGoogle Scholar
  25. Galagan JE, Calvo SE, Borkovich KA et al (2003) The genome sequence of the filamentous fungus Neurospora crassa. Nature 422:859–868PubMedCrossRefGoogle Scholar
  26. Giraldo MC, Dagdas YF, Gupta YK et al (2013) Two distinct secretion systems facilitate tissue invasion by the rice blast fungus Magnaporthe oryzae. Nat Commun 4. doi: 10.1038/ncomms2996
  27. Gokce E, Franck WL, Oh Y et al (2012) In-depth analysis of the Magnaporthe oryzae conidial proteome. J Proteome Res 11:5827–5835PubMedCentralPubMedGoogle Scholar
  28. Haas BJ, Kamoun S, Zody MC et al (2009) Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393–398PubMedCrossRefGoogle Scholar
  29. Hamer L, Adachi K, Montenegro-Chamorro MV et al (2001) Gene discovery and gene function assignment in filamentous fungi. Proc Natl Acad Sci U S A 98:5110–5115PubMedCentralPubMedCrossRefGoogle Scholar
  30. Han Y, Liu X, Benny U et al (2001) Genes determining pathogenicity to pea are clustered on a supernumerary chromosome in the fungal plant pathogen Nectria haematococca. Plant J 25:305–314PubMedCrossRefGoogle Scholar
  31. Hartmann T, Sasse C, Schedler A et al (2011) Shaping the fungal adaptome—Stress responses of Aspergillus fumigatus. Int J Med Microbiol 301:408–416PubMedCrossRefGoogle Scholar
  32. Hatta R, Ito K, Hosaki Y et al (2002) A conditionally dispensable chromosome controls host-specific pathogenicity in the fungal plant pathogen Alternaria alternata. Genetics 161:59–70PubMedCentralPubMedGoogle Scholar
  33. Huang K, Czymmek KJ, Caplan JL et al (2011) HYR1-mediated detoxification of reactive oxygen species is required for full virulence in the rice blast fungus. PLoS Pathog 7:e1001335PubMedCentralPubMedCrossRefGoogle Scholar
  34. Igarashi S, Utimada CM, Igarashi LC et al (1986) Pyricularia sp. em trigo. I. Occurencia de Pyricularia sp. no estado do Paraná. Fitopatol Bras 11:351–352Google Scholar
  35. Ikeda K, Nakayashiki H, Kataoka T et al (2002) Repeat-induced point mutation (RIP) in Magnaporthe grisea: implications for its sexual cycle in the natural field context. Mol Microbiol 45:1355–1364PubMedCrossRefGoogle Scholar
  36. Jeon J, Goh J, Yoo S et al (2008) A putative MAP kinase kinase kinase, MCK1, is required for cell wall integrity and pathogenicity of the rice blast fungus, Magnaporthe oryzae. Mol Plant Microbe Interact 21:525–534PubMedCrossRefGoogle Scholar
  37. Jia Y, McAdams SA, Bryan GT et al (2000) Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO J 19:4004–4014PubMedCentralPubMedCrossRefGoogle Scholar
  38. Johnson LJ, Johnson RD, Akamatsu H et al (2001) Spontaneous loss of a conditionally dispensable chromosome from the Alternaria alternata apple pathotype leads to loss of toxin production and pathogenicity. Curr Genet 40:65–72PubMedCrossRefGoogle Scholar
  39. Kadotani N, Nakayashiki H, Tosa Y et al (2003) RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact 16:769–776PubMedCrossRefGoogle Scholar
  40. Kamoun S (2006) A catalogue of the effector secretome of plant pathogenic oomycetes. Annu Rev Phytopathol 44:41–60PubMedCrossRefGoogle Scholar
  41. Kamper J, Kahmann R, Bolker M et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101PubMedCrossRefGoogle Scholar
  42. Kang SC, Sweigard JA, Valent B (1995) The PWL host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant Microbe Interact 8:939–948PubMedCrossRefGoogle Scholar
  43. Kankanala P, Czymmek K, Valent B (2007) Roles for rice membrane dynamics and plasmodesmata during biotrophic invasion by the blast fungus. Plant Cell 19:706–724PubMedCentralPubMedCrossRefGoogle Scholar
  44. Kemen E, Gardiner A, Schultz-Larsen T et al (2011) Gene gain and loss during evolution of obligate parasitism in the white rust pathogen of Arabidopsis thaliana. PLoS Biol 9:e1001094PubMedCentralPubMedCrossRefGoogle Scholar
  45. Kershaw MJ, Talbot NJ (2009) Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci U S A 106:15967–15972PubMedCentralPubMedCrossRefGoogle Scholar
  46. Khang CH, Berruyer R, Giraldo MC et al (2010) Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–1403PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kim S, Park SY, Kim KS et al (2009) Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet 5:e1000757PubMedCentralPubMedCrossRefGoogle Scholar
  48. Kim S, Singh P, Park S et al (2011) Genetic and molecular characterization of a blue light photoreceptor MGWC-1 in Magnaporthe oryzae. Fungal Genet and Biol 48:400--407Google Scholar
  49. Kim S, Hu J, Oh Y et al (2010) Combining ChIP-chip and expression profiling to model the MoCRZ1 mediated circuit for Ca/calcineurin signaling in the rice blast fungus. PLoS Pathog 6:e1000909PubMedCentralPubMedCrossRefGoogle Scholar
  50. Kim SK, Lee YH (2012) Gene expression profiling during conidiation in the rice blast pathogen Magnaporthe oryzae. PLoS ONE 7:e43202PubMedCentralPubMedCrossRefGoogle Scholar
  51. Kim SG, Wang Y, Lee KH et al (2013a) In-depth insight into in vivo apoplastic secretome of rice-Magnaporthe oryzae interaction. J Proteomics 78:58–71PubMedCrossRefGoogle Scholar
  52. Kim Y, Park SY, Kim D et al (2013b) Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics 101:354–361PubMedCrossRefGoogle Scholar
  53. Kwon M, Kim KS, Lee YH (2010) A short-chain dehydrogenase/reductase gene is required for infection-related development and pathogenicity in Magnaporthe oryzae. Plant Pathol J 26:8–16CrossRefGoogle Scholar
  54. Leclair S, Ansan-Melayah D, Rouxel T et al (1996) Meiotic behaviour of the minichromosome in the phytopathogenic ascomycete Leptosphaeria maculans. Curr Genet 30:541–548PubMedCrossRefGoogle Scholar
  55. Leung H, Borromeo ES, Bernardo MA et al (1988) Genetic analysis of virulence in the rice blast fungus Magnaporthe grisea. Genetics 78:1227–1233Google Scholar
  56. Li W, Wang BH et al (2009) The Magnaporthe oryzae avirulence gene AVR-Pizt encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene PIZ-T. Mol Plant Microbe Interact 22:411–420PubMedCrossRefGoogle Scholar
  57. Li G, Zhou X, Xu JR (2012) Genetic control of infection-related development in Magnaporthe oryzae. Curr Opin Microbiol 15:678–684PubMedCrossRefGoogle Scholar
  58. Ma LJ, van der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373PubMedCentralPubMedCrossRefGoogle Scholar
  59. Machida M, Asai K, Sano M et al (2005) Genome sequencing and analysis of Aspergillus oryzae. Nature 438:1157–1161PubMedCrossRefGoogle Scholar
  60. Marangoni MS, Nunes MP, Fonsenca N et al (2013) Pyricularia blast on white oats: a new threat to wheat cultivation. Trop Plant Pathol 38:198–202CrossRefGoogle Scholar
  61. Mathioni SM, Beló A, Rizzo CJ et al (2011) Transcriptome profiling of the rice blast fungus during invasive plant infection and in vitro stresses. BMC Genom 12:49CrossRefGoogle Scholar
  62. McBeath JH, McBeath J (2010) Plant diseases, pests and food security. In: Beniston M (ed) Environmental change and food security in China. Advances in global change research, vol 35. Springer, Heidelberg, pp 117–156Google Scholar
  63. Meng Y, Patel G, Heist M et al (2007) A systematic analysis of T-DNA insertion events in Magnaporthe oryzae. Fungal Genet Biol 44:1050–1064PubMedCrossRefGoogle Scholar
  64. Miki S, Matsui K, Kito H et al (2009) Molecular cloning and characterization of the AVR-Pia locus from a Japanese field isolate of Magnaporthe oryzae. Mol Plant Pathol 10:361–374PubMedCrossRefGoogle Scholar
  65. Millevoi S, Vagner S (2010) Molecular mechanisms of eukaryotic pre-mRNA 39 end processing regulation. Nucleic Acids Res 38:2757–2774PubMedCentralPubMedCrossRefGoogle Scholar
  66. Morrison DK (2009) The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19:16–23PubMedCentralPubMedCrossRefGoogle Scholar
  67. Mosquera G, Giraldo MC, Khang CH et al (2009) Interaction transcriptome analysis identifies Magnaporthe oryzae BAS1-4 as biotrophy-associated secreted proteins in rice blast disease. Plant Cell 21:1273–1290PubMedCentralPubMedCrossRefGoogle Scholar
  68. Nguyen QB, Itoh K, Van Vu B et al (2011) Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae. Mol Microbiol 81:1008–1019PubMedCrossRefGoogle Scholar
  69. Nguyen QB, Kadotani N, Kasahara S et al (2008) Systematic functional analysis of calcium signalling proteins in the genome of the rice-blast fungus, Magnaporthe oryzae, using a high-throughput RNA-silencing system. Mol Microbiol 68:1348–1365PubMedCrossRefGoogle Scholar
  70. Odenbach D, Breth B, Thines E et al (2007) The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol 64:293–307PubMedCrossRefGoogle Scholar
  71. Oh Y, Donofrio N, Pan H et al (2008) Transcriptome analysis reveals new insight into appressorium and function in the rice blast fungus Magnaporthe oryzae. Genome Biol 9:R85PubMedCentralPubMedCrossRefGoogle Scholar
  72. Oh Y, Franck WL, Han SO et al (2012) Polyubiquitin is required for growth, development and pathogenicity in the rice blast fungus Magnaporthe oryzae. PLoS ONE 7:e42868PubMedCentralPubMedCrossRefGoogle Scholar
  73. Ohm RA, de Jong JF, Lugones LG et al (2010) Genome sequence of the model mushroom Schizophyllum commune. Nat Biotechnol 28:957–963PubMedCrossRefGoogle Scholar
  74. Orbach MJ, Farrall L, Sweigard JA et al (2000) A telomeric avirulence gene determines efficacy for the rice blast resistance gene Pi-ta. Plant Cell 12:2019–2032PubMedCentralPubMedCrossRefGoogle Scholar
  75. Patkar RN, Ramos-Pamplona M, Gupta AP et al (2012) Mitochondrial β-oxidation regulates organellar integrity and is necessary for conidial germination and invasive growth in Magnaporthe oryzae. Mol Microbiol 86:1345–1363PubMedCrossRefGoogle Scholar
  76. Park SY, Choi J, Lim SE et al (2013) Global expression profiling of transcription factor genes provides new insights into pathogenicity and stress responses in the rice blast fungus. PLoS Pathog 9:e1003350PubMedCentralPubMedCrossRefGoogle Scholar
  77. Parker D, Beckmann M, Zubair H et al (2009) Metabolomic analysis reveals a common pattern of metabolic re-programming during invasion of three host plant species by Magnaporthe grisea. Plant J 59:723–737PubMedCrossRefGoogle Scholar
  78. Raffaele S, Farrer RA, Cano LM et al (2010) Genome evolution following host jumps in the Irish Potato Famine pathogen lineage. Science 330:1540–1543PubMedCrossRefGoogle Scholar
  79. Raman V, Simon S, Romag A et al (2013) Physiological stressors and invasive plant infections alter the small RNA transcriptome of the rice blast fungus, Magnaporthe oryzae. BMC Genomics 14. doi: 10.1186/1471-2164-14-326
  80. Schirawski J, Mannhaupt G, Münch K et al (2010) Pathogenicity determinants in smut fungi revealed by genome comparison. Science 330:1546–1548PubMedCrossRefGoogle Scholar
  81. Shi Z, Leung H (1995) Genetic analysis of sporulation in Magnaporthe grisea by chemical and insertional mutagenesis. Mol Plant Microbe Interact 8:949–959CrossRefGoogle Scholar
  82. Shnaiderman C, Miyara I, Kobiler I et al (2013) Differential activation of ammonium transporters during the accumulation of ammonia by Colletotrichum gloeosporioides and its effect on appressoria formation and pathogenicity. Mol Plant Microbe Interact 26:345–355PubMedCrossRefGoogle Scholar
  83. Soanes DM, Chakrabarti A, Paszkiewicz KH et al (2012) Genome-wide transcriptional profiling of appressorium development by the rice blast fungus Magnaporthe oryzae. PLoS Pathog 8:e1002514PubMedCentralPubMedCrossRefGoogle Scholar
  84. Solomon PS, Tan KC, Oliver RP (2003) The nutrient supply of pathogenic fungi; a fertile field for study. Mol Plant Pathol 4:203–210PubMedCrossRefGoogle Scholar
  85. Spanu PD, Abbott JC, Amselem J et al (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546PubMedCrossRefGoogle Scholar
  86. Stukenbrock EH, Jorgensen FG, Zala M et al (2010) Whole-genome and chromosome evolution associated with host adaptation and speciation of the wheat pathogen Mycosphaerella graminicola. PLoS Genet 6:e1001189PubMedCentralPubMedCrossRefGoogle Scholar
  87. Sweigard JA, Carroll AM, Kang S et al (1995) Identification, cloning, and characterization of Pwl2, a gene for host species-specificity in the rice blast fungus. Plant Cell 7:1221–1233PubMedCentralPubMedCrossRefGoogle Scholar
  88. Sweigard JA, Carroll AM, Farrall L et al (1998) Magnaporthe grisea pathogenicity genes obtained through insertional mutagenesis. Mol Plant Microbe Interact 11:404–412PubMedCrossRefGoogle Scholar
  89. Takano Y, Choi W, Mitchell TK et al (2003) Large scale parallel analysis of gene expression during infection-related morphogenesis of Magnaporthe grisea. Mol Plant Pathol 4:337–346PubMedCrossRefGoogle Scholar
  90. Talbot NJ, McCafferty HRK, Ma M et al (1997) Nitrogen starvation of the rice blast fungus Magnaporthe grisea may act as an environmental cue for disease symptom expression. Physiol Mol Plant Pathol 50:179–195CrossRefGoogle Scholar
  91. Tanzer MM, Arst HN, Skalchunes AR et al (2003) Global nutritional profiling for mutant and chemical mode-of-action analysis in filamentous fungi. Funct Integr Genomics 3:160–170PubMedCrossRefGoogle Scholar
  92. Thines E, Weber RW, Talbot NJ (2000) MAP kinase and protein kinase A-dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. Plant Cell 12:1703–1718PubMedCentralPubMedGoogle Scholar
  93. Thompson JE, Fahnestock S, Farrall L et al (2000) The second naphthol reductase of fungal melanin biosynthesis in Magnaporthe grisea: tetrahydroxynaphthalene reductase. J Biol Chem 275:34867–34872PubMedCrossRefGoogle Scholar
  94. Thon MR, Pan H, Diener S et al (2006) The role of transposable element clusters in genome evolution and loss of synteny in the rice blast fungus Magnaporthe oryzae. Genome Biol 7:R16PubMedCentralPubMedCrossRefGoogle Scholar
  95. Tzeng TH, Lyngholm LK, Ford CF et al (1992) A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics 130:81–96PubMedCentralPubMedGoogle Scholar
  96. Veaneault-Fourrey C, Barooah M, Egan M et al (2006) Autophagic fungal cell death is necessary for infection by the rice blast fungus. Nature 312:580–583Google Scholar
  97. Wang ZY, Thornton CR, Kershaw MJ et al (2003) The glyoxylate cycle is required for temporal regulation of virulence by the plant pathogenic fungus Magnaporthe grisea. Mol Microbiol 47:1601–1612PubMedCrossRefGoogle Scholar
  98. Wang ZY, Soanes DM, Kershaw MJ et al (2007) Functional analysis of lipid metabolism in Magnaporthe grisea reveals a requirement for peroxisomal fatty acid beta-oxidation during appressorium-mediated plant infection. Mol Plant Microbe Interact 20:475–491PubMedCrossRefGoogle Scholar
  99. Wilson RA, Fernandez J, Quispe CF et al (2012) Towards defining nutrient conditions encountered by the rice blast fungus during host infection. PLoS ONE 7:e47392PubMedCentralPubMedCrossRefGoogle Scholar
  100. Wilson RA, Talbot NJ (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nat Rev Microbiol 7:185--195Google Scholar
  101. Wei W, McCusker JH, Hyman RW et al (2007) Genome sequencing and comparative analysis of Saccharomyces cerevisiae strain YJM789. Proc Natl Acad Sci U S A 104:12825–12830PubMedCentralPubMedCrossRefGoogle Scholar
  102. Xue MF, Yang J, Li Z et al (2012) Comparative analysis of the genomes of two field isolates of the rice blast fungus Magnaporthe oryzae. PLoS Genet 8:e1002869PubMedCentralPubMedCrossRefGoogle Scholar
  103. Yi M, Chi MH, Khang CH (2009) The ER chaperone LHS1 is involved in asexual development and rice infection by the blast fungus, Magnaporthe oryzae. Plant Cell 21:681–695PubMedCentralPubMedCrossRefGoogle Scholar
  104. Yoshida K, Saitoh H, Fujisawa S et al (2009) Association genetics reveals three novel avirulence genes from the rice blast fungal pathogen Magnaporthe oryzae. Plant Cell 21:1573–1591PubMedCentralPubMedCrossRefGoogle Scholar
  105. Zhang H, Liu K, Zhang X et al (2011) Two phosphodiesterase genes PDEL and PDEH, regulate development and pathogenicity by modulating intracellular cyclic AMP levels in Magnaporthe oryzae. PLoS ONE 6:e17241PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg  2014

Authors and Affiliations

  • Nicole M. Donofrio
    • 1
    Email author
  • Jinnan Hu
    • 2
  • Thomas K. Mitchell
    • 2
  • Richard A. Wilson
    • 3
  1. 1.Plant and Soil Sciences DepartmentUniversity of DelawareNewarkUSA
  2. 2.Department of Plant PathologyThe Ohio State UniversityColumbusUSA
  3. 3.Department of Plant PathologyUniversity of Nebraska-LincolnLincolnUSA

Personalised recommendations