Skip to main content

Introduction to Time-Delay Systems

  • Chapter
  • First Online:
Linear Parameter-Varying and Time-Delay Systems

Part of the book series: Advances in Delays and Dynamics ((ADVSDD,volume 3))

Abstract

The goal of this chapter is to introduce the main manners for representing time-delay systems. As for parameters in LPV systems, delays can also be classified in different categories depending on the their nature and the way they act on the system. Several real world examples are given to motivate the usefulness and relevance of time-delay systems in science and engineering. We notably discuss about the harmful and beneficial effects of the delays on the stability properties of dynamical systems. Controllers and observers that are specific to time-delay systems are finally briefly presented.

Nous pouvons rêver d’équations fonctionelles plus compliquées que les équations classiques parce qu’elles renfermeront en outre des intégrales prises entre le temps passé très éloigné et le temps actuel, qui apporteront la part de l’hérédité. (We may dream about more complicated functional equations than classical equations since they shall in addition contain integrals taken between the distant past time and the current time, which shall bring the share of heredity.)

Emile Picard

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The definition of the congestion window size may differ from one protocol to another.

  2. 2.

    More information on NS-2 available here http://nsnam.isi.edu/nsnam/index.php/Main_Page.

  3. 3.

    FIFO stands for “First-In-First-Out” and means that the packets leave the queue in the same order they entered. This is an order preserving queue.

  4. 4.

    See e.g. [223225] for discrete-time switched systems and time-delay systems. These references do not consider delay-scheduled controllers.

References

  1. R.E. Bellman, K.L. Cooke, Differential Difference Equations (Academic Press, New York, 1963)

    MATH  Google Scholar 

  2. V.B. Kolmanovskii, A.D. Myshkis, Applied Theory of Functional Differential Equations (Kluwer, Dordrecht, 1992)

    Google Scholar 

  3. J.K. Hale, S.M. Verduyn Lunel, Introduction to Functional Differential Equations (Springer, New York, 1991)

    Google Scholar 

  4. S.I. Niculescu, Delay Effects on Stability: A Robust Control Approach (Springer, Heidelbeg, 2001)

    Google Scholar 

  5. K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhäuser, Boston, 2003)

    MATH  Google Scholar 

  6. A.S. Morse, Ring models for delay differential systems. Automatica 12, 529–531 (1976)

    MATH  MathSciNet  Google Scholar 

  7. E. W. Kamen, Lectures on algebraic system theory: linear systems over rings. Contractor report 3016, NASA, 1978

    Google Scholar 

  8. G. Conte, A.M. Perdon, The decoupling problem for systems over a ring, in 34th IEEE Conference on Decision and Control, (New Orleans, USA, 1995), pp. 2041–2045

    Google Scholar 

  9. G. Conte, A. M. Perdon, A. Lombardo, The decoupling problem with weak ouptput controllability for systems over a ring. in 36th IEEE Conference on Decision and Control, (San Diego, USA, 1997), pp. 313–317

    Google Scholar 

  10. O. Sename, J.F. Lafay, R. Rabah, Controllability indices of linear systems with delays. Kybernetika 6, 559–580 (1995)

    MathSciNet  Google Scholar 

  11. P. Picard, J.F. Lafay, Weak observability and observers for linear systems with delays, in MTNS 96, (Saint Louis, USA, 1996)

    Google Scholar 

  12. G. Conte, A.M. Perdon, Noninteracting control problems for delay-diffrerential systems via systems over rings, in Colloque Analyse et Commande des systèmes avec retards (Nantes, France, 1996), pp. 101–114

    Google Scholar 

  13. R. Curtain, H. Logemann, S. Townley, H. Zwart, Well-posedness, stabilizability and admissibility for pritchard-slamon systems. J. Math. Syst. Estimation Control 4(4), 1–38 (1994)

    MathSciNet  Google Scholar 

  14. G. Meinsma, H. Zwart, On \(\cal {H}_\infty \) control for dead-time systems. IEEE Trans. Autom. Control 45(2), 272–285 (2000)

    MATH  MathSciNet  Google Scholar 

  15. O.V. Iftime, H.J. Zwart, R.F. Curtain, representation of all solutions of the control algebraic ricatti equations for infinite-dimensional systems. Int. J. Control 78(7), 505–520 (2005)

    MATH  MathSciNet  Google Scholar 

  16. A. Bensoussan, G. Da Prato, M.C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems, 2nd Edn. (Birkhäuser, Boston, USA, 2007)

    Google Scholar 

  17. J.G. Borisovic, A.S. Turbabin, On the Cauchy problem for linear non-homogeneous differential equations with retarded argument. Soviet Math. Dokl. 10, 401–405 (1969)

    Google Scholar 

  18. M.C. Delfour, S.K. Mitter, Controllability, observability and optimal feedback control of affine hereditary differential systems. SIAM J. Control Optim. 10, 298–328 (1972)

    MATH  MathSciNet  Google Scholar 

  19. C. Bernier, A. Manitius, On semigroups in \(\mathbb{R}^n\times {L}^p\) corresponding to differential equations with delays. Canadian J. Math. 5, 897–914 (1978)

    MathSciNet  Google Scholar 

  20. A. Manitius, R. Triggiani, Function space controllability of linear retarded systems: a derivation from abstract operator conditions. SIAM J. Control Optim. 16(4), 599–645 (1978)

    MATH  MathSciNet  Google Scholar 

  21. V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations (Kluwer Academic Publishers, Dordrecht, 1999)

    MATH  Google Scholar 

  22. N.N. Krasovskiĭ, Stability of Motion. Applications of Lyapunov’s Second Method to Differential Systems and Equations with Delay (Translated from Russian) (Stanford University Press, Stanford, 1963)

    Google Scholar 

  23. O. Diekmann, S.A. van Gils, S.M. Verduyn Lunel, H.O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis (Springer, New York, 1995)

    MATH  Google Scholar 

  24. W. Michiels, S.I. Niculescu, Stability and Stabilization of Time-Delay Systems. An Eigenvalue based Approach (SIAM Publication, Philadelphia, 2007)

    MATH  Google Scholar 

  25. J.P. Hespanha, P. Naghshtabrizi, Y. Xu, A survey of recent results in networked control systems. Proc. IEEE 95(1), 138–162 (2007)

    Google Scholar 

  26. E. Witrant, C. Canudas-de-Wit, D. Gerorges, M. Alamir, Remote stabilization via communication networks with a distributed control law. IEEE Trans. Autom. Control 52(8), 1480–1485 (2007)

    Google Scholar 

  27. G. Vinnicombe, On the stability of networks operating TCP-like congestion control, in 15th IFAC World Congress (Barcelona, Spain, 2002) pp. 217–222

    Google Scholar 

  28. F. Pagaganini, J.C. Doyle, S. Low, A control theoretical look at internet congestion control, in Multidisciplinary Research in Control, Lecture Notes in Control and Information Sciences, ed. by L. Giarré, B. Bamieh, vol. 289 (Springer, Berlin Heidelberg, 2003), pp. 17–31

    Google Scholar 

  29. C. Briat, H. Hjalmarsson, K.H. Johansson, G. Karlsson, U.T.Jönsson, H. Sandberg, Nonlinear state-dependent delay modeling and stability analysis of internet congestion control. In 49th IEEE Conference on Decision and Control (Atlanta, USA, 2010), pp. 1484–1491

    Google Scholar 

  30. C. Briat, E.A. Yavuz, G. Karlsson, A conservation-law-based modular fluid-flow model for network congestion modeling, in 31st IEEE International Conference on Computer Communications (INFOCOM) (Orlando, Florida, USA, 2012), pp. 2050–2058

    Google Scholar 

  31. H.W. Hethcote, M.A. Lewis, P. van den Driessche, An epidemiological model with a delay and a nonlinear incidence rate. J. Math. Biol. 27, 49–64 (1998)

    Google Scholar 

  32. H.W. Hethcote, P. van den Driessche, An SIS epidemic model with variable population size and a delay. J. Math. Biol. 34, 177–194 (1995)

    MATH  MathSciNet  Google Scholar 

  33. D. Bratsun, D. Volfson, L.S. Tsimring, J. Hasty, Delay-induced stochastic regulation oscillations in gene regulation. Proc. Nat. Acad. Sci. U.S.A. 102(42), 14593–14598 (2005)

    Google Scholar 

  34. M.E. Ahsen, H. Özbay, S.-I. Niculescu, On the analysis of a dynamical model representing gene regulatory networks under negative feedback. Int. J. Robust Nonlinear Control, 24, 1609–1627 (2014)

    Google Scholar 

  35. G. Besançon, D. Georges, Z. Benayache, Towards nonlinear delay-based control for convection-like distributed systems: the example of water flow control in open channel systems. Networks Heterogen. Media 4(2), 177–194 (2009)

    Google Scholar 

  36. Z. Wu, W. Michiels, Reliably computing all characteristic roots of delay differential equations in a given right half plane using a spectral method. J. Comput.Appl. Math. 236, 2499–2514 (2011)

    MathSciNet  Google Scholar 

  37. E.I. Verriest, Linear systems with rational distributed delay: reduction and stability, in European Control Conference, ECC’99 (Karlsruhe, Germany, 1999)

    Google Scholar 

  38. U. Münz, J.M. Rieber, F. Allgöwer, Robust stabilization and \({H}_\infty \) control of uncertain distributed delay systems, in Topics in Time-Delay Systems, vol. 388 of Lecture Notes in Control and Information Sciences (Springer, Berlin Heidelberg, 2009), pp. 221–231

    Google Scholar 

  39. F. Gouaisbaut, Y. Ariba, Delay range stability of a class of distributed time delay systems. Syst. Control Lett. 60, 211–217 (2011)

    MATH  MathSciNet  Google Scholar 

  40. L. Crocco, Aspects of combustion stability in liquid propellant rocket motors, Part I. Fundamentals—Low frequency instability with monopropellants. J. Am. Rocket Soc. 21, 163–178 (1951)

    Google Scholar 

  41. Y.A. Fiagbedzi, A.E. Pearson, A multistage reduction technique for feedback stabilizing distributed time-lag systems. Automatica 23, 311–326 (1987)

    MATH  MathSciNet  Google Scholar 

  42. C. Briat, E.I. Verriest, A new delay-SIR model for pulse vaccination. Biomed. Signal Process. Control 4(4), 272–277 (2009)

    Google Scholar 

  43. W. Michiels, C.-I. Morărescu, S.-I. Niculescu, Consensus problems with distributed delays, with application to traffic flow models. SIAM J. Control Optim. 48(1), 77–101 (2009)

    MATH  MathSciNet  Google Scholar 

  44. S.-I. Niculescu, C.-I. Morărescu, W. Michiels, K. Gu, Geometric ideas in the stability analysis of delay models in biosciences, in Biology and Control Theory: Current Challenges, vol. 357, Lecture Notes in Control and Information Sciences, ed. by I. Queinnec, S. Tarbouriech, G. Garcia, S.-I. Niculescu (Springer, Berlin, 2007), pp. 217–259

    Google Scholar 

  45. H. Özbay, C. Bonnet, H. Benjelloun, J. Clairambault, Stability analysis of cell dynamics in leukemia. Math. Model. Nat. Phenom. 7(1), 203–234 (2012)

    MATH  MathSciNet  Google Scholar 

  46. R.K. Brayton, Bifurcation of periodic solutions in a nonlinear difference-differential equation of neutral type. Quart. Appl. Math 24, 215–224 (1966)

    MATH  MathSciNet  Google Scholar 

  47. P. Picard, O. Sename, J.F. Lafay, Weak controllability and controllability indices for linear neutral systems. Math. Comput. Simul. 45, 223–233 (1998)

    MATH  MathSciNet  Google Scholar 

  48. W. Michiels, K. Engelborghs, D. Roose, D. Dochain, Sensitivity to infinitesimal delays in neutral equations. SIAM J. Control Optim. 40(4), 1134–1158 (2002)

    MathSciNet  Google Scholar 

  49. V.B. Kolmanovskii, V.R. Nosov, Stability of Functional Differential Equations (Academic Press, London, 1986)

    MATH  Google Scholar 

  50. R.M. Murray, C.A. Jacobsson, R. Casas, A.I. Khibnik, C.R. Johnson Jr., R. Bitmead, A.A. Peracchio, W.M. Proscia, System identification for limit cycling systems: a case study for combustion instabilities, in American Control Conference (1998), pp. 2004–2008

    Google Scholar 

  51. A. Bellen, N. Guglielmi, Methods for linear systems of circuit delay differential equations of neutral type. IEEE Trans. Circuits Syst. I 76(1), 212–215 (1999)

    MathSciNet  Google Scholar 

  52. K. Engelborghs, M. Dambrine, D. Roose, Limitations of a class of stabilizing methods for delay equations. IEEE Trans. Autom. Control 46(2), 336–339 (2001)

    MATH  MathSciNet  Google Scholar 

  53. T. Vyhlídal, W. Michiels, P. Zítek, P. McGrahan, Stability impact of small delays in proportional-derivative state feedback. Control Eng. Pract. 17, 382–393 (2009)

    Google Scholar 

  54. W. Michiels, K. Engelborghs, D. Roose, D. Dochain, Sensitivity to infinitesimal delays in neutral equations. SIAM J. Control Optim. 40(4), 1134–1158 (2001)

    MATH  MathSciNet  Google Scholar 

  55. E.C. Pielou, Mathematical ecology (Wiley Interscience, New York, 1977)

    Google Scholar 

  56. K. Gopalsamy, B.G. Zhang, On a neutral delay-logistic equation. Dyn. Stab. Syst. Int. J. 2(3–4), 183–195 (1988)

    MathSciNet  Google Scholar 

  57. E.I. Verriest, P. Pepe, Time optimal and optimal impulsive control for coupled differential difference point delay systems with an application in forestry, in Topics in Time Delay Systems, vol. 388, Lecture Notes in Control and Information Sciences, ed. by J.J. Loiseau, W. Michiels, S.I. Niculescu, R. Sipahi (Springer, Berlin, 2009), pp. 255–265

    Google Scholar 

  58. Y. Kuang, Delay Differential Equations with Applications in Population Dynamics (Academic, San Diego, 1993)

    MATH  Google Scholar 

  59. H.J. Wearing, P. Rohani, M.J. Keeling, Appropriate models for the management of infectious diseases. PLoS Med 2(7), e174 (2005)

    Google Scholar 

  60. C. Briat, E.I. Verriest, A new delay-SIR model for pulse vaccination, in 17th IFAC World Congress (Seoul, South Korea, 2008), pp. 10295–10300

    Google Scholar 

  61. T. Kato, J.B. McLeod, The functional-differential equation \(y(x)=ay(\lambda x)+by(x)\). Bull. Am. Math. Soc. 77(6), 891–937 (1971)

    MATH  MathSciNet  Google Scholar 

  62. L. Fox, D.F. Mayers, J.R. Ockendon, A.B. Tayler, On a functional differential equation. J. Inst. Maths. Applics. 8, 271–307 (1971)

    MATH  MathSciNet  Google Scholar 

  63. A. Iserles, On the generalized pantograph functional-differential equation. Eur. J. Appl. Math. 4(1), 1–38 (1993)

    MATH  MathSciNet  Google Scholar 

  64. A. Iserles, On nonlinear delay differential equations. Trans. Am. Math. Soc. 344(1), 441–477 (1994)

    MATH  MathSciNet  Google Scholar 

  65. A.P. Zhabko, A.A. Laktionov, V.I. Zubov, Robust stability of differential-difference systems with linear time-delay, in IFAC Symposium on Robust Control Design (Budapest, Hungary, 1997), pp. 97–101

    Google Scholar 

  66. A.A. Laktionov, A.P. Zhabko, Method of difference transformations for differential systems with linear time-delay, in IFAC Workshop on Linear Time Delay Systems (Grenoble, France, 1998), pp. 201–205

    Google Scholar 

  67. E.I. Verriest, Robust stability, adjoints, and lq control of scale-delay systems, in 38th IEEE Conference on decision and control (Phoenix, Arizona, USA, 1999), pp. 209–214

    Google Scholar 

  68. J.R. Ockendon, A.B. Tayler, The dynamics of a current collection system for an electric locomotive. Proc. R. Soc. London A 322, 447–468 (1971)

    Google Scholar 

  69. V.A. Ambartsumian, On the theory of brightness fluctuations in the milky way (in russian). Doklady Akad. Nauk SSSR, 44:244–247, 1944 (Trans. Compt. Rend. (Doklady) Acad. Sci. URSS 44 (1944), 223–226)

    Google Scholar 

  70. V.A. Ambartsumian, Theoretical astrophysics (Pergamon Press, NY, 1958)

    Google Scholar 

  71. K. Mahler, On a special nonlinear functional equation. Proc. R. Soc. London. Ser. A, Math. Phys. Sci. 378(1773), 155–178 (1981)

    MATH  MathSciNet  Google Scholar 

  72. D.P. Gaver Jr, An absorption probability problem. J. Math. Anal. Appl. 9, 384–393 (1964)

    MATH  MathSciNet  Google Scholar 

  73. G.A. Derfel, Kato problem for functional-differential equations and difference schrödinger operator, in Operator Theory, ed. by P. Exner, P. Seba (Birhhäuser Verlag, Basel, 1990), pp. 319–321

    Google Scholar 

  74. V. Spiridonov, Universal superpositions of coherent states and self-similar potentials. Phys. Rev. A 52, 1909–1935 (1995)

    Google Scholar 

  75. G.C. Wake, S. Cooper, H.K. Kim, B. van Brunt, Functional differential equations for cell-growth models with dispersion. Commun. Appl. Anal. 4, 561–573 (2000)

    MATH  MathSciNet  Google Scholar 

  76. J. Louisell, New examples of quenching in delay differential equations having time-varying delay, in 4th European Control Conference (1999)

    Google Scholar 

  77. A. Papachristodoulou, M.M. Peet, S.I. Niculescu, Stability analysis of linear systems with time-varying delays: Delay uncertainty and quenching, in 46th Conference on Decision and Control (LA, USA, New Orleans, 2007)

    Google Scholar 

  78. E.I. Verriest, Well-posedness of problems involving time-varying delays. in 19th International Symposium on Mathematical Theory and Networks and Systems (Budapest, Hungary, 2010), pp. 1203–1210

    Google Scholar 

  79. W. Michiels, E.I. Verriest, A look at fast varying and state dependent delays from a system theory point of view (K. U. Leuven, Internal report, 2011)

    Google Scholar 

  80. E.I. Verriest, State space realization for systems with state dependent delay, in 11th IFAC Workshop on Time-Delay Systems (Grenoble, France, 2013), pp. 446–451

    Google Scholar 

  81. A.R. Teel, D. Nešić, P.V. Kokotović, A note on input-to-state stability of sampled-data nonlinear systems, in 37th IEEE Conference on Decision and Control (1998), pp. 2473–2478

    Google Scholar 

  82. E. Fridman, A. Seuret, J.P. Richard, Robust sampled-data stabilization of linear systems: an input delay approach. Automatica 40, 1441–1446 (2004)

    MATH  MathSciNet  Google Scholar 

  83. A. Seuret, Stability analysis for sampled-data systems with a time-varying period, in 48th Conference on Decision and Control (Shanghai, China, 2009), pp. 8130–8135

    Google Scholar 

  84. F. Hartung, T. Krisztin, H.O. Walther, J. Wu, Functional differential equations with state-dependent delays: Theory and applications, in A. Ca nana, P. Drábek, and A. Fonda, editors, Handbook of differential equations—Ordinary differential equations, Vol. 3, (Elsevier, 2006), pp. 435–546.

    Google Scholar 

  85. H.O. Walther, On a model for soft landing with state-dependent delay. J. Dyn. Differ. Equ. 19(3), 593–622 (2007)

    MATH  MathSciNet  Google Scholar 

  86. H.O. Walther, On a model of soft landing with state-dependent delay. Int. J. Non-Linear Mech. 43(2), 140–149 (2008)

    Google Scholar 

  87. H.O. Walther, Differentiable Semiflows for Differential Equations with State-Dependent Delays. Technical report, Universitatis Lagellonicae Acta Mathematica, 2003

    Google Scholar 

  88. M. Bartha, Convergence of solutions for an equation with state-dependent delay. J. Math. Anal. Appl. 254, 410–432 (2001)

    MATH  MathSciNet  Google Scholar 

  89. E.I. Verriest, Stability of systems with state-dependent and random delays. IMA J. Math. Control Inf. 19(1–2), 103–114 (2002)

    MATH  MathSciNet  Google Scholar 

  90. I. Györi, F. Hartung, Exponential stability of a state-dependent delay system. Discrete Continuous Dyn. Syst. 18(4), 773–791 (2007)

    MATH  Google Scholar 

  91. M. Louihi, M.L. Hbid, Exponential stability for a class of state-dependent delay equations via the crandall-liggett approach. J. Math. Anal. Appl. 329, 1045–1063 (2007)

    MATH  MathSciNet  Google Scholar 

  92. K.L. Cooke, W. Huang, On the problem of linearization for state-dependent delay differential equations. Proc. Am. Math. Soc. 124(5), 1417–1426 (1996)

    MATH  MathSciNet  Google Scholar 

  93. T. Luzianina, K. Engelborghs, D. Roose, Diiferential equations with state-dependent delay—a numerical study, in 16th IMACS World Congress (2000)

    Google Scholar 

  94. T. Luzianina, K. Engelborghs, D. Roose, Numerical bifurcation analysis of differential equations with state-dependent delay. Int. J. Bifurcation Chaos 11(3), 737–753 (2001)

    Google Scholar 

  95. A. Feldstein, K.W. Neves, S. Thompson, Sharpness results for state dependent delay differential equations: an overview. Appl. Numer. Anal. 56, 472–487 (2005)

    MathSciNet  Google Scholar 

  96. N. Bekiaris-Liberis, M. Krstic, Compensation of time-varying input and state delays for nonlinear systems. J. Dyn. Syst. Measur. Control 134, 011009 (2012)

    Google Scholar 

  97. N. Bekiaris-Liberis, M. Jankovich, M. Krstic, Compensation of state-dependent state delay nonlinear systems. Syst. Control Lett. 61, 849–856 (2012)

    MATH  Google Scholar 

  98. N. Bekiaris-Liberis, M. Krstic, Compensation of state-dependent input delay for nonlinear systems. IEEE Trans. Autom. Control 58(2), 275–289 (2013)

    MathSciNet  Google Scholar 

  99. C. Briat, H. Hjalmarsson, K.H. Johansson, G. Karlsson, U.T. Jönsson, H. Sandberg, E.A. Yavuz, An axiomatic fluid-flow model for congestion control analysis, in 50th IEEE Conference on Decision and Control (Orlando, Florida, USA, 2011), pp. 3122–3129

    Google Scholar 

  100. J. Goutsias, G. Jenkinson, Markovian Dynamics on Complex Reaction Networks. Physical reports, 529, 199–264 (2013)

    Google Scholar 

  101. F. Horn, R. Jackson, General mass action kinetics. Arch. Ration. Mech. Anal. 47(2), 81–116 (1972)

    MathSciNet  Google Scholar 

  102. M. Feinberg, Complex balancing in general kinetic systems. Arch. Ration. Mech. Anal. 49(3), 187–194 (1972)

    MathSciNet  Google Scholar 

  103. P. Érdi, J. Tóth, Mathematical Models of Chemical Reactions: Theory and Applications of Deterministic and Stochastic Models (Princeton University Press, Princeton, 1989)

    MATH  Google Scholar 

  104. D. Anderson, T.G. Kurtz, Continuous time Markov chain models for chemical reaction networks. Design and analysis of biomolecular circuits—Engineering Approaches to Systems and Synthetic Biology, ed. by H. Koeppl, D. Densmore, G. Setti, M. di Bernardo (Springer Science+Business Media, 2011), pp. 3–42

    Google Scholar 

  105. W. Zhang, M.S. Branicky, S.M. Phillips, Stability of Networked Control Systems. IEEE Control Syst. Mag. 21(1), 84–99 (2001)

    Google Scholar 

  106. S. Zampieri, A survey of recent results in Networked Control Systems, in 17th IFAC World Congress (Seoul, South Korea, 2008), pp. 2886–2894

    Google Scholar 

  107. P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks. IEEE Trans. Autom. Control 52(9), 1680–1685 (2007)

    MathSciNet  Google Scholar 

  108. A. Anta, P. Tabuada, To sample or not to sample: Self-triggered control for nonlinear systems. IEEE Trans. Autom. Control 55(9), 2030–2042 (2010)

    MathSciNet  Google Scholar 

  109. D. Dimarogonas, E. Frazzoli, K.H. Johansson, Distributed event-triggered control for multi-agent systems. IEEE Trans. Autom. Control 57(12), 1291–1297 (2012)

    MathSciNet  Google Scholar 

  110. Y.S. Suh, Stability and stabilization of nonuniform sampling systems. Automatica 44, 3222–3226 (2008)

    MATH  MathSciNet  Google Scholar 

  111. H. Fujioka, A discrete-time approach to stability analysis of systems with aperiodic sample-and-hold devices. IEEE Trans. Autom. Control 54(10), 2440–2445 (2009)

    MathSciNet  Google Scholar 

  112. Y. Oishi, H. Fujioka, Stability and stabilization of aperiodic sampled-data control systems: an approach using robust linear matrix inequalities, in 48th Conference on Decision and Control (Shanghai, China, 2009), pp. 8142–8147

    Google Scholar 

  113. L. Hetel, J. Daafouz, C. Iung, Stabilization of arbitrary switched linear systems with unknown time-varying delays. IEEE Trans. Autom. Control 51(10), 1668–1674 (2006)

    MathSciNet  Google Scholar 

  114. E. Fridman, A refined input delay approach to sampled-data control. Automatica 46(2), 421–427 (2010)

    Google Scholar 

  115. K. Liu, V. Suplin, E. Fridman, Stability of linear systems with general sawtooth delay. IMA J. of Math. Control Inf. 27(4), 419–436 (2010)

    MATH  MathSciNet  Google Scholar 

  116. K. Liu, E. Fridman, Wirtinger’s inequality and Lyapunov-based sampled-data stabilization. Automatica 48(1), 102–108 (2012)

    MATH  MathSciNet  Google Scholar 

  117. L. Mirkin, Some remarks on the use of time-varying delay to model sample-and-hold circuits. IEEE Trans. Autom. Control 52(6), 1109–1112 (2007)

    MathSciNet  Google Scholar 

  118. H. Fujioka, Stability analysis of systems with aperiodic sample-and-hold devices. Automatica 45, 771–775 (2009)

    MATH  MathSciNet  Google Scholar 

  119. C.-Y. Kao, H. Fujioka, On stability of systems with aperiodic sampling devices. IEEE Trans. Autom. Control 58(3), 2085–2090 (2013)

    Google Scholar 

  120. W. Sun, K.M. Nagpal, P.P. Khargonekar, \({H_\infty }\) control and filtering with sampled measurements, in American Control Conference, 1991 (1991), pp. 1652–1657

    Google Scholar 

  121. N. Sivashankar, P.P. Khargonekar, Characterization of the \({\cal L}_{2}\)-induced norm for linear systems with jumps with applications to sampled-data systems. SIAM J. Control Optim. 32(4), 1128–1150 (1994)

    Google Scholar 

  122. G.E. Dullerud, S. Lall, Asynchronous hybrid systems with jumps—analysis and synthesis methods. Syst. Control Lett. 37(2), 61–69 (1999)

    MATH  MathSciNet  Google Scholar 

  123. P. Naghshtabrizi, J.P. Hespanha, A.R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57, 378–385 (2008)

    MATH  MathSciNet  Google Scholar 

  124. C. Briat, A. Seuret, A looped-functional approach for robust stability analysis of linear impulsive systems. Syst. Control Lett. 61, 980–988 (2012)

    MATH  MathSciNet  Google Scholar 

  125. C. Briat, A. Seuret, Robust stability of impulsive systems: a functional-based approach, in 4th IFAC Conference on analysis and design of hybrid systems (Eindovhen, the Netherlands, 2012), pp. 412–417

    Google Scholar 

  126. C. Briat, A. Seuret, Convex dwell-time characterizations for uncertain linear impulsive systems. IEEE Trans. Autom. Control 57(12), 3241–3246 (2012)

    MathSciNet  Google Scholar 

  127. D. Robert, O. Sename, D. Simon, An \(\cal {H}_\infty \) LPV design for sampling varying controllers: experimentation with a T-inverted pendulum. IEEE Trans. Control Syst. Technol. 18(3), 741–749 (2010)

    Google Scholar 

  128. A. Seuret, A novel stability analysis of linear systems under asynchronous samplings. Automatica 48(1), 177–182 (2012)

    MATH  MathSciNet  Google Scholar 

  129. C. Briat, Convex conditions for robust stability analysis and stabilization of linear aperiodic impulsive and sampled-data systems under dwell-time constraints. Automatica 49, 3449–3457 (2013)

    MathSciNet  Google Scholar 

  130. K. Wickwire, Mathematical models for the control of pests and infectious diseases: a survey. Theor. Popul. Biol. 11(2), 182–238 (1977)

    MATH  MathSciNet  Google Scholar 

  131. R.M. Anderson, R.M. May, Directly transmitted infectious diseases: control by vaccination. Science 215, 1053–1060 (1982)

    MATH  MathSciNet  Google Scholar 

  132. J. Arino, P. van den Driessche, Time delays in epidemic models: modeling and numerical considerations, in Delay Differential Equations and Applications, ed. by O. Arino, M. L. Hbid and E. Ait Dads (Springer, Netherlands, 2006), pp. 539–578

    Google Scholar 

  133. O. Diekmann, J.A.P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases (Wiley, Chichester, 2000)

    Google Scholar 

  134. H.W. Hethcote, The mathematics of infectious diseases. SIAM Rev. 42(4), 599–653 (2002)

    MathSciNet  Google Scholar 

  135. R.M. Anderson, R.M. May, Infectious Diseases of Humans: Dynamics and Control (Oxford University Press, New York, 2002)

    Google Scholar 

  136. J.D. Murray, Mathematical Biology Part I. An Introduction, 3rd edn. (Springer, Berlin, 2002)

    Google Scholar 

  137. W.M. Haddad, V. Chellaboina, Q. Hui, Nonnegative and Compartmental Dynamical Systems (Princeton University Press, New Jersey, 2010)

    MATH  Google Scholar 

  138. C.M. Guldberg, P. Waage, Studies concerning affinity. Forhandlinger: Videnskabs-Selskabet i Christiana, 35, 1864

    Google Scholar 

  139. P. Waage, Experiments for determining the affinity law. Forhandlinger: Videnskabs-Selskabet i Christiana, 92, 1864

    Google Scholar 

  140. C.M. Guldberg, Concerning the laws of chemical affinity. Forhandlinger: Videnskabs-Selskabet i Christiana, 111, 1864

    Google Scholar 

  141. L. Trevor, Affinity and Matter—Elements of Chemical Philosophy 1800–1865 (Gordon and Breach Science Publishers, San Fracisco, 1971)

    Google Scholar 

  142. Unknown author, Influenza in a boarding school. Br. Med. J., March 4, 587 (1978)

    Google Scholar 

  143. Unknown author, Tashkent influenza (’red flu’) January 1978. Ampleforth J., 4, 587 (1978)

    Google Scholar 

  144. G. de Vries, J. Müller, T. Hillen, B. Schönfisch, M. Lewis, A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods (SIAM, Philadelphia, 2006)

    Google Scholar 

  145. R. Pearl, The biology of Population Growth (Knopf, New York, 1930)

    Google Scholar 

  146. P.F. Verhulst, Notice sur la loi que la population suit dans son accroissement (french). Correspondance mathématique et physique 10, 113–121 (1938)

    Google Scholar 

  147. H.I. Freedman, Y. Kuang, Stability switches in linear scalar neutral delay equations. Funkcialaj Ekvacioj 34, 187–209 (1991)

    MATH  MathSciNet  Google Scholar 

  148. V. Jacobson, Congestion avoidance and control. SIGCOMM Comput. Commun. Rev. 18(4), 314–329 (1988)

    Google Scholar 

  149. R. Srikant, The Mathematics of Internet Congestion Control (Birkhäuser, Boston, 2004)

    MATH  Google Scholar 

  150. D.X. Wei, C. Jin, S.H. Low, S. Hedge, FAST TCP: Motivation, architecture, algorithms, performance. IEEE/ACM Trans. Networking 14(6), 1246–1259 (2006)

    Google Scholar 

  151. V. Misra, W.B. Gong, D. Towsley, Fluid-based analysis of a network of AQM routers supporting TCP flows with an application to RED, in ACM SIGCOMM’00 (Stockholm, Sweden, 2000)

    Google Scholar 

  152. R. Johari, D. Tan, End-to-End Congestion Control for the Internet: Delay and Stability. Technical report, (Statistical Laboratory, University of Cambridge, 2000)

    Google Scholar 

  153. R. Johari, D.K. Tan, End-to-end congestion control for the Internet—Delays and Stability. IEEE/ACM Trans. Networking 19(6), 818–832 (2001)

    Google Scholar 

  154. F. Paganini, Z. Wang, J.C. Doyle, S.H. Low, Congestion control for high performance, stability, and fairness in general networks. IEEE/ACM Trans. Networking 13(1), 43–56 (2005)

    Google Scholar 

  155. J. Wang, D.X. Wei, S. H. Low, Modelling and stability of FAST TCP, in 28th IEEE Conference on Computer Communications (INFOCOM) (2005), pp. 938–948

    Google Scholar 

  156. K. Jacobsson, L.L.H. Andrew, A.K. Tang, K.H. Johansson, H. Hjalmarsson, S.H. Low, ACK-clock dynamics: Modeling the interaction between ACK-clock and network, in 27th IEEE Conference on Computer Communications (INFOCOM) (Phoenix, Arizona, USA, 2008), pp. 181–185

    Google Scholar 

  157. K. Jacobsson, Dynamic Modeling of Internet Congestion Control. PhD thesis, KTH School of Electrical Engineering, 2008

    Google Scholar 

  158. N. Möller, Window-based congestion control. Doctoral thesis, KTH, Stockholm, Sweden, 2008

    Google Scholar 

  159. Y. Liu, F.L. Presti, V. Misra, D.F. Towsley, Scalable fluid models and simulations for large-scale ip networks. ACM Trans. Model. Comput. Simul. 14(3), 305–324 (2004)

    MATH  Google Scholar 

  160. J.P. Hespanha, S. Bohacek, K. Obraczka, J. Lee, Hybrid modeling of TCP congestion control, in Hybrid Systems: Computation and Control, Lecture Notes in Computer Science, ed. by M. Di Benedetto, A. Sangiovanni-Vincentelli (Springer, Berlin, 2001), pp. 291–304

    Google Scholar 

  161. C. Briat, E.A. Yavuz, H. Hjalmarsson, K.-H. Johansson, U.T. Jönsson, G. Karlsson, H. Sandberg, The conservation of information, towards an axiomatized modular modeling approach to congestion control, in IEEE Transactions on Networking, 23(3) (2015). doi: 10.1109/TNET.2014.2308272

  162. D. Mitra, Stochastic theory of a fluid model of producers and consumers coupled by a buffer. Adv. Appl. Probab. 20(3), 646–676 (1988)

    MATH  Google Scholar 

  163. D.V. Lindley, The theory of queues with a single server. Math. Proc. Cambridge Philos. Soc. 48, 277–289 (1952)

    MathSciNet  Google Scholar 

  164. C. Ohta, F. Ishizaki, Output processes of shaper and switch with self-similar traffic in ATM networks. IEICE Trans. Commun. E81–B(10), 1936–1940 (1998)

    Google Scholar 

  165. A. Tang, K. Jacobsson, L.L.H. Andrew, S.H. Low, An accurate link model and its application to stability analysis of FAST TCP, in 26th IEEE Conference on Computer Communications (INFOCOM) (Anchorage, Alaska, USA, 2007), pp. 161–169

    Google Scholar 

  166. K. Jacobsson, H. Hjalmarsson, N. Möller, ACK-clock dynamics in network congestion control—An inner feedback loop with implications on inelastic flow impact, in 45th IEEE Conference on Decision and Control (San Diego, California, USA, 2006), pp. 1882–1887

    Google Scholar 

  167. Y. Orlov, L. Belkoura, J.-P. Richard, M. Dambrine, Adaptive identification of linear time-delay systems. Int. J. Robust Nonlinear Control 13(9), 857–872 (2003)

    MATH  MathSciNet  Google Scholar 

  168. S. Drakunov, S. Perruquetti, J.P. Richard, L. Belkoura, Delay identification in time-delay systems using variable structure control. Annual Rev. Control 30(2), 143–158 (2006)

    Google Scholar 

  169. L. Belkoura, J.P. Richard, M. Fliess, Real time identification of time-delay systems, in IFAC Workshop on Time-Delay Systems (Nantes, France, 2007)

    Google Scholar 

  170. L. Belkoura, J.P. Richard, M. Fliess, A convolution approach for delay systems identification, in IFAC World Congress (Seoul, South Korea, 2008)

    Google Scholar 

  171. A.W. Pila, U. Shaked, C.E. de Souza, \(\langle _\infty \) filtering for continuous-time linear systems with delay. IEEE Trans. Autom. Control 44(7), 1412–1417 (1999)

    MATH  Google Scholar 

  172. E. Fridman, U. Shaked, A new \({H}_\infty \) filter design for linear time delay systems. IEEE Trans. on Signal Process. 49(11), 2839–2843 (2001)

    MathSciNet  Google Scholar 

  173. C.E. de Souza, R.M. Palhares, P.L.D. Peres, Robust \(\cal H_\infty \) filters design for uncertain linear systems with multiple time-varying state delays. IEEE Trans. Signal Process. 49(3), 569–576 (2001)

    Google Scholar 

  174. H. Gao, C. Wang, Delay-dependent robust \({H}_\infty \) and \({L}_2-{L}_\infty \) filtering for a class of uncertain nonlinear time-delay systems. IEEE Trans. Autom. Control 48(9), 1661–1666 (2003)

    Google Scholar 

  175. E. Fridman, U. Shaked, L. Xie, Robust \({H}_\infty \) filtering of linear systems with time-varying delays. IEEE Trans. Autom. Control 48(1), 159–165 (2003)

    MathSciNet  Google Scholar 

  176. K.P.M. Bhat, H.N. Koivo, An observer theory for time-delay systems. IEEE Trans. Autom. Control 216(2), 166–169 (1976)

    Google Scholar 

  177. A.W. Olbrot, Stabilizability, detectability, and spectrum assignment for linear autonomous systems with general time delays. IEEE Trans. Autom. Control 23(5), 887–890 (1978)

    MATH  MathSciNet  Google Scholar 

  178. E.B. Lee, A.W. Olbrot, Observability and related structural results for linear hereditary systems. Int. J. Control 34, 1061–1078 (1981)

    MATH  MathSciNet  Google Scholar 

  179. D. Salamon, On controllability and observability of time delay systems. IEEE Trans. Autom. Control 29(5), 432–439 (1984)

    MATH  MathSciNet  Google Scholar 

  180. O. Sename, New trends in design of observers for time-delay systems. Kybernetika 37(4), 427–458 (2001)

    MATH  MathSciNet  Google Scholar 

  181. A. Fattouh, O. Sename, J.M. Dion, Robust observer design for time-delay systems: A riccati equation approach. Kybernetika 35(6), 753–764 (1999)

    MATH  MathSciNet  Google Scholar 

  182. O. Sename, Unknown input robust observers for time-delay systems, in 36th IEEE Conference on Decision and Control (San Diego, California, USA, 1997), pp. 1629–1630

    Google Scholar 

  183. A. Fattouh, O. Sename, J. M. Dion, An unknown input observer design for linear time-delay systems, in Proceedings of 38th IEEE Conference on Decision & Control (Phoenix, Arizona, USA, 1999), pp. 4222–4227

    Google Scholar 

  184. A. Fattouh, O. Sename, J. M. Dion, \(\cal {H}_{\infty }\) observer design for time-delay systems, in Proceedings of 37th IEEE Conference on Decision & Control (Tampa, Florida, USA, 1998), pp. 4545–4546

    Google Scholar 

  185. O. Sename, A. Fattouh, J-M. Dion, Further results on unknown input observers design for time-delay systems, in 40th IEEE Conference on Decision and Control (Orlando, Florida, USA, 2001)

    Google Scholar 

  186. W. Aggoune, M. Boutayeb, M. Darouach, Observers design for a class of non linear systems with time-varying delay, in Proceedings of 38th IEEE Confererence on Decision & Control (Phoenix, Arizona, USA, 1999), pp. 2912–2913

    Google Scholar 

  187. A. Fattouh, O. Sename, J.M. Dion, An LMI approach to robust observer design for linear time-delay systems, in Proceedings 39th IEEE Conference on Decision & Control (Sydney, Australia, December, 2000), pp. 12–15

    Google Scholar 

  188. M. Darouach, Linear functional observers for systems with delays in state variables. IEEE Trans. Autom. Control 46(3), 491–496 (2001)

    MATH  MathSciNet  Google Scholar 

  189. D. Koenig, B. Marx, O. Sename, Unknown inputs proportional integral observers for descriptors systems with multiple delays and unknown inputs, in American Control Conference (Boston, Massachusetts, USA, 2004)

    Google Scholar 

  190. M. Darouach, Reduced-order observers for linear neutral delay systems. IEEE Trans. Autom. Control 50(9), 1407–1413 (2005)

    MathSciNet  Google Scholar 

  191. D. Koenig, D. Jacquet, S. Mammar, Delay dependent \(\cal {H}_\infty \) observer for linear delay descriptor systems, in American Control Conference 2006 (Minneapolis, USA, 2006)

    Google Scholar 

  192. Y.A. Fiagbedzi, A.E. Pearson, A state observer for systems described by functional differential equations. Automatica 26(2), 321–331 (1990)

    MATH  MathSciNet  Google Scholar 

  193. A.W. Olbrot, On controllability of linear systems with time delay in control. IEEE Trans. Autom. Control 17(5), 664–666 (1972)

    Google Scholar 

  194. M.W. Spong, T.J. Tarn, On the spectral controllability of delay-differential equations. IEEE Trans. Autom. Control 26(2), 527–528 (1981)

    MATH  MathSciNet  Google Scholar 

  195. O. Sename, J.F. Lafay, A sufficient condition for static decoupling without prediction of linear time-invariant systems with delays, in ECC 93, European Control Conference (Groningen, The Netherlands, 1993), pp. 673–678

    Google Scholar 

  196. O. Sename, On controllability and decoupling of linear systems with delays (in French). PhD thesis, Ecole Centrale Nantes, France, 1994

    Google Scholar 

  197. O. Sename, J.F. Lafay, Decoupling of linear systems with delays, in 33th IEEE Conference on Decision and Control (Orlando, Floride, USA, 1994)

    Google Scholar 

  198. O. Sename, J.F. Lafay, R. Rabah, Decoupling without prediction of linear systems with delays: a structural approach. Syst. Control Lett. 25, 387–395 (1995)

    MATH  MathSciNet  Google Scholar 

  199. X. Li, C.E. de Souza, A. Trofino, Delay dependent robust stabilization of uncertain linear state-delayed systems via static output feedback, in IFAC Workshop on Linear Time-Delay Systems (Grenoble, France, 1998), pp. 1–6

    Google Scholar 

  200. S.I. Niculescu, C.T. Abdallah, Delay effects on static output feedback stabilization, in 39th IEEE Conference on Decision and Control (Sydney, Australia, 2000), pp. 2811–2816

    Google Scholar 

  201. W. Michiels, S.I. Niculescu, L. Moreau, Using delays and time-varying gains to improve the static output feedback of linear systems: a comparison. IMA J. Math. Control Inf. 21(4), 393–418 (2004)

    MATH  MathSciNet  Google Scholar 

  202. V.L. Kharitonov, S.-I. Niculescu, J. Moreno, W. Michiels, Static output feedback stabilization: necessary conditions for multiple delay controllers. IEEE Trans. Autom. Control 50(1), 82–86 (2005)

    MathSciNet  Google Scholar 

  203. A. Seuret, C. Edwards, S.K. Spurgeon, E. Fridman, Static output feedback sliding mode control design via an artificial stabilizing delay. IEEE Trans. Autom. Control 54(2), 256–265 (2009)

    MathSciNet  Google Scholar 

  204. V.L. Syrmos, C.T. Abdallah, P. Dorato, K. Grigoriadis, Static output feedback—a survey. Automatica 33(2), 125–137 (1997)

    MATH  MathSciNet  Google Scholar 

  205. V. Blondel, J.N. Tsitsiklis, NP-hardness of some linear control problems. SIAM J. Control Optim. 35(6), 2118–2127 (1997)

    MATH  MathSciNet  Google Scholar 

  206. M. Fu, Pole placement via static output feedback is NP-hard. IEEE Trans. Autom. Control 49(5), 855–857 (2004)

    Google Scholar 

  207. F. Wu, Robust quadratic performance for time-delayed uncertain linear systems. Int. J. Robust Nonlinear Control 13, 153–172 (2003)

    MATH  Google Scholar 

  208. C. Briat, O. Sename, J.-F. Lafay, A full-block \(\cal {S}\)-procedure application to delay-dependent \(\cal {H}_\infty \) state-feedback control of uncertain time-delay systems, in 17th IFAC World Congress (Seoul, South Korea, 2008), pp. 12342–12347

    Google Scholar 

  209. M.M. Peet, Full-state feedback of delayed system using SOS: A new theory of duality, in 11th IFAC Workshop on Time-Delay Systems (Grenoble, France, 2013), pp. 24–29

    Google Scholar 

  210. C. Briat, O. Sename, J.-F. Lafay, Memory resilient gain-scheduled state-feedback control of time-delay systems with time-varying delays, in 6th IFAC Symposium on Robust Control Design (Haifa, Israel, 2009), pp. 202–207

    Google Scholar 

  211. C. Briat, O. Sename, J.-F. Lafay, Memory resilient gain-scheduled state-feedback control of uncertain LTI/LPV systems with time-varying delays. Syst. Control Lett. 59, 451–459 (2010)

    MATH  MathSciNet  Google Scholar 

  212. J.-H. Ge, P.M. Frank, C.-F. Lin, \({H}_\infty \) control via output feedback for state delayed system. Int. J. Control 64(1), 1–7 (1996)

    MATH  MathSciNet  Google Scholar 

  213. A. Fattouh, O. Sename, J. M. Dion, \(\cal {H}_\infty \) controller and observer design for linear systems with point and distributed time-delays: An LMI approach, in 2nd IFAC Workshop on Linear Time Delay Systems (Ancône, Italy, 2000)

    Google Scholar 

  214. O. Sename, C. Briat, Observer-based \(\cal {H}_\infty \) control for time-delay systems: a new LMI solution, in 6th IFAC Workshop on Time Delay Systems (L’Aquila, Italy, 2006), pp. 114–119

    Google Scholar 

  215. O. Sename, C. Briat, Observer-based \(\cal {H}_\infty \) control for time-delay systems: a new LMI solution, in 9th European Control Conference (Kos, Greece, 2007), pp. 5123–5130

    Google Scholar 

  216. O. Sename, Is a mixed design of observer-controllers for time-delay systems interesting ? Asian J. Control 9(2), 180–189 (2007)

    MathSciNet  Google Scholar 

  217. E.T. Jeung, J.H. Kim, H.B. Park, \({H}^\infty \)-output feedback controller design for linear systems with time-varying delayed state. IEEE Trans. Autom. Control 43(7), 971–974 (1998)

    MATH  MathSciNet  Google Scholar 

  218. J.M. Gomes da Silva, I. Ghiggi, S. Tarbouriech, Non-rational dynamic ouput feedback for time-delay systems with saturating inputs. Int. J. Control 81(4), 557–570 (2008)

    MATH  MathSciNet  Google Scholar 

  219. C. Briat, O. Sename, J.-F. Lafay, A LFT/\(\cal {H}_\infty \) state-feedback design for linear parameter varying time delay systems, in 9th European Control Conference (Kos, Greece, 2007), pp. 4882–4888

    Google Scholar 

  220. C. Briat, O. Sename, J.-F. Lafay, Delay-scheduled state-feedback design for time-delay systems with time-varying delays, in 17th IFAC World Congress (Seoul, South Korea, 2008), pp. 1267–1272

    Google Scholar 

  221. C. Briat, O. Sename, J.-F. Lafay, \(\cal {H}_\infty \) delay-scheduled control of linear systems with time-varying delays. IEEE Trans. Autom. Control 42(8), 2255–2260 (2009)

    MathSciNet  Google Scholar 

  222. C. Briat, O. Sename, J.-F. Lafay, Delay-scheduled state-feedback design for time-delay systems with time-varying delays—a LPV approach. Syst. Control Lett. 58(9), 664–671 (2009)

    MATH  MathSciNet  Google Scholar 

  223. J. Daafouz, J. Bernussou, Parameter dependent Lyapunov functions for discrete time systems with time varying parametric uncertainties. Syst. Control Lett. 43, 355–359 (2001)

    Google Scholar 

  224. J. Daafouz, P. Riedinger, C. Iung, Stability analysis and control synthesis for switched systems: a switched Lyapunov function approach. IEEE Trans. Autom. Control 47(11), 1883–1887 (2002)

    MathSciNet  Google Scholar 

  225. L. Hetel, J. Daafouz, C. Iung, Equivalence between the Lyapunov-Krasovskii functionals approach for discrete delay systems and that of the stability conditions for switched systems. Nonlinear Anal. Hybrid Syst. 2(3), 697–705 (2008)

    MATH  MathSciNet  Google Scholar 

  226. W. Jiang, E. Fridman, A. Kruszewski, J.-P. Richard, Switching controller for stabilization of linear systems with switched time-varying delays, in IEEE Conference on Decision and Control (2009), pp. 7923–7928

    Google Scholar 

  227. B. Demirel, C. Briat, M. Johansson, Supervisory control design for networked systems with time-varying communication delays, in 4th IFAC Conference on analysis and design of hybrid systems (Eindovhen, the Netherlands, 2012), pp. 133–140

    Google Scholar 

  228. B. Demirel, C. Briat, M. Johansson, Supervisory control design for networked systems with time-varying communication delays. Nonlinear Anal. Hybrid Syst. 10, 94–110 (2013)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Briat .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Briat, C. (2015). Introduction to Time-Delay Systems. In: Linear Parameter-Varying and Time-Delay Systems. Advances in Delays and Dynamics, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44050-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44050-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44049-0

  • Online ISBN: 978-3-662-44050-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics