Advertisement

Generalizations and Methodological Considerations for ANOVA

  • Bruno Lecoutre
  • Jacques Poitevineau
Chapter
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)

Abstract

This chapter generalizes the basic fiducial Bayesian procedures to the usual unstandardized and standardized ANOVA effect sizes indicators. Methodological aspects are discussed and appropriate alternatives to these indicators are introduced and illustrated.

Keywords

ANOVA table Contrast analysis Fiducial Bayesian procedures Inference about a contrast between means Inference about ANOVA effect sizes 

References

  1. Baguley, T.: Standardized or simple effect size: What should be reported? Brit. J. Psychol. 100, 603–617 (2009)CrossRefGoogle Scholar
  2. Beauchamp, K.L., May, R.B.: Replication report: Interpretation of levels of significance by psychological researchers. Psychol. Rep. 14, 272 (1964)CrossRefGoogle Scholar
  3. Cohen, J.: Statistical Power Analysis for the Behavioral Sciences (revised edition). Academic Press, New York (1977)Google Scholar
  4. Geisser, S.: Bayesian estimation in multivariate analysis. Ann. Math. Statist. 36, 150–159 (1965)CrossRefzbMATHMathSciNetGoogle Scholar
  5. Holender, D., Bertelson, P.: Selective preparation and time uncertainty. Acta Psychol. 39, 193–203 (1975)CrossRefGoogle Scholar
  6. Kelley, K.: Confidence intervals for standardized effect sizes: theory, application, and implementation. J. Stat. Softw. 20, 2–24 (2007)Google Scholar
  7. Lecoutre, B., Guigues, J.-L., Poitevineau, J.: Distribution of quadratic forms of multivariate Student variables. Appl. Stat.-J. Roy. St. C 41, 617–627 (1992)Google Scholar
  8. Lecoutre, B., Rouanet, H.: Deux structures statistiques fondamentales en analyse de la variance univariée et multivariée. Math. Sci. Hum. 75, 71–82 (1981)zbMATHMathSciNetGoogle Scholar
  9. Lecoutre, B.: Extensions de l’analyse de la variance: l’analyse bayésienne des comparaisons. Math. Sci. Hum. 75, 49–69 (1981)zbMATHMathSciNetGoogle Scholar
  10. Lecoutre, B.: Two useful distributions for Bayesian predictive procedures under normal models. J. Stat. Plan. Infer. 79, 93–105 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  11. Lecoutre, B., Derzko, G.: Asserting the smallness of effects in ANOVA. Methods Psychol. Res. 6, 1–32 (2001)Google Scholar
  12. Lecoutre, B.: Training students and researchers in Bayesian methods. J. Data Sci. 4, 207–232 (2006)Google Scholar
  13. Minturn, E.B., Lansky, L.M., Dember, W.N.: The interpretation of levels of significance by psychologists: A replication and extension. Paper presented at the meeting of the Eastern Psychological Association, Boston (1972)Google Scholar
  14. Nelson, N., Rosenthal, R., Rosnow, R.L.: Interpretation of significance levels and effect sizes by psychological researchers. Am. Psychol. 41, 1299–1301 (1986)CrossRefGoogle Scholar
  15. Oakes, M.: Statistical Inference: A Commentary for the Social and Behavioural Sciences. Wiley, New York (1986)Google Scholar
  16. Poitevineau, J., Lecoutre, B.: Interpretation of significance levels by psychological researchers: The. 05-cliff effect may be overstated. Psychon. B. Rev. 8, 847–850 (2001)Google Scholar
  17. Poitevineau, J., Lecoutre, B.: Implementing Bayesian predictive procedures: the K-prime and K-square distributions. Comput. Stat. Data An. 54, 723–730 (2010)CrossRefMathSciNetGoogle Scholar
  18. Publication Manual of the American Psychological Association, 6th edn. American Psychological Association, Washington (2010)Google Scholar
  19. Rosenthal, R., Gaito, J.: The interpretation of levels of significance by psychological researchers. J. Psychol. 55, 33–38 (1963)CrossRefGoogle Scholar
  20. Rosenthal, R., Gaito, J.: Further evidence for the cliff effect in the interpretation of levels of significance. Psychol. Rep. 15, 570 (1964)CrossRefGoogle Scholar
  21. Rouanet, H., Lecoutre, B.: Specific inference in ANOVA: from significance tests to Bayesian procedures. Brit. J. Math. Stat. Psy. 36, 252–268 (1983)CrossRefzbMATHGoogle Scholar
  22. Rouanet, H.: Bayesian procedures for assessing importance of effects. Psychol. Bull. 119, 149–158 (1996)CrossRefGoogle Scholar
  23. Scheffé, H.: A method for judging all contrasts in the analysis of variance. Biometrika 40, 87–104 (1953)zbMATHMathSciNetGoogle Scholar
  24. Schervish, M.J.: Bayesian analysis of linear models. In: Bernardo, J.M., Berger, J.O., Dawid, A.P., Smith, A.F.M. (eds.) Bayesian Statistics IV, pp. 419–434. Oxford University Press, Oxford (1992)Google Scholar
  25. Schervish, M.J.: Theory of statistics. Springer, New York (1995)CrossRefzbMATHGoogle Scholar
  26. Steiger, J.H., Fouladi, R.T.: Noncentrality interval estimation and the evaluation of statistical models. In: Harlow, L.L., Mulaik, S.A., Steiger, J.H. (eds.) What If There Were No Significance Tests?, pp. 221–257. Erlbaum, Hillsdale (1997)Google Scholar
  27. Steiger, J.H.: Beyond the F test: Effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychol. Methods 9, 164–182 (2004)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.ERIS, Laboratoire de Mathématiques Raphaël SalemUMR 6085, CNRS Université de RouenSaint-Étienne-du-RouvrayFrance
  2. 2.ERIS, IJLRA UMR-7190, CNRSUniversité Pierre et Marie CurieParisFrance

Personalised recommendations