Reporting Confidence Intervals: A Paradoxical Situation

  • Bruno LecoutreEmail author
  • Jacques Poitevineau
Part of the SpringerBriefs in Statistics book series (BRIEFSSTATIST)


This chapter reviews the different views and interpretations of interval estimates. It discusses their methodological implications—what is the right use of interval estimates? The usual confidence intervals are compared with the so-called “exact” or “correct” confidence intervals for ANOVA effect sizes. While the former can receive both frequentist and Bayesian justifications and interpretations, the latter have logical and methodological inconsistencies that demonstrate the shortcomings of the uncritical use of the Neyman-Pearson approach. In conclusion, we have to ask: Why isn’t everyone a Bayesian?


Bayesian credible interval Equivalence trials Fisher’s fiducial inference Frequentist confidence interval The inconsistencies of confidence intervals for effect sizes The naive Bayesian interpretation of confidence intervals 


  1. Agresti, A., Coull, B.: Approximate is better than exact for interval estimation of binomial proportions. Am. Stat. 52, 119–126 (1998)MathSciNetGoogle Scholar
  2. Agresti, A., Min, Y.: Frequentist performance of Bayesian confidence intervals for comparing proportions in \(2\times 2\) contingency tables. Biometrics 61, 515–523 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  3. Berger, J.: The case for objective Bayesian analysis. Bayesian Anal. 11, 1–17 (2004)Google Scholar
  4. Brown, L.D., Cai, T., DasGupta, A.: Interval estimation for a binomial proportion (with discussion). Stat. Sci. 16, 101–133 (2001)zbMATHMathSciNetGoogle Scholar
  5. Cai, T.: One-sided confidence intervals in discrete distributions. J. Stat. Plan. Inference 131, 63–88 (2005)CrossRefzbMATHGoogle Scholar
  6. Deheuvels, P.: How to analyze bio-equivalence studies? the right use of confidence intervals. J. Organ. Behav. Stat. 1, 1–15 (1984)MathSciNetGoogle Scholar
  7. Efron, B.: R.A. Fisher in the 21st century (with discussion). Stat. Sci. 13, 95–122 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  8. Fidler, F., Thompson, B.: Computing correct confidence intervals for ANOVA fixed and random-effects effect sizes. Educ. Psychol. Meas. 61, 575–604 (2001)MathSciNetGoogle Scholar
  9. Fisher, R.A.: Statistical Methods and Scientific Inference (reprinted 3rd edition, 1973). In: Bennett, J.H. (ed.) Statistical Methods, Experimental Design, and Scientific Inference. Oxford University Press, Oxford (1990a)Google Scholar
  10. Fisher, R.A.: The Design of Experiments (reprinted 8th edition, 1966). In: Bennett, J.H. (ed.) Statistical Methods, Experimental Design, and Scientific Inference. Oxford University Press, Oxford (1990b)Google Scholar
  11. Gigerenzer, G.: The superego, the ego, and the id in statistical reasoning. In: Keren, G., Lewis, C. (eds.) A Handbook for Data Analysis in the Behavioral Sciences: Methodological Issues, pp. 311–339. Erlbaum, Hillsdale (1993)Google Scholar
  12. Gravetter, F.J., Wallnau, L.B.: Statistics for the behavioral sciences, 8th edn. Wadsworth, Belmont (2009)Google Scholar
  13. Hannig, J.: On generalized fiducial inference. Statist. Sinica 19, 491–544 (2009)zbMATHMathSciNetGoogle Scholar
  14. ICH E9 Expert Working Group: Statistical principles for clinical trials: ICH harmonised tripartite guideline, current step 4 version (1998). Cited 13 March 2014
  15. Laplace, P.S.: Essai Philosophique sur les Probabilités (6th edn) (English translation: A Philosophical Essay on Probability, Dover, New York, 1952). Bachelier, Paris (1840)Google Scholar
  16. Lecoutre, B., Derzko, G.: Intervalles de confiance et de crédibilité pour le rapport de taux d’évènements rares. 4èmes Journées de Statistique, SFdS, Bordeaux (2009). Accessed 13 March 2014
  17. Lecoutre, B., Charron, C.: Bayesian procedures for prediction analysis of implication hypotheses in \(2 \times 2\) contingency tables. J. Educ. Behav. Stat. 25, 185–201 (2000)Google Scholar
  18. Lecoutre, B., ElQasyr, K.: Adaptative designs for multi-arm clinical trials: the play-the-winner rule revisited. Commun. Stat. B-Simul. 37, 590–601 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  19. Lecoutre, B.: Bayesian methods for experimental data analysis. In: Rao, C.R., Miller, J., Rao, D.C. (eds.) Handbook of Statistics: Epidemiology and Medical Statistics (Vol 27), pp. 775–812. Elsevier, Amsterdam (2008)Google Scholar
  20. Lecoutre, B., Derzko, G., ElQasyr, K.: Frequentist performance of Bayesian inference with response-adaptive designs. Stat. Med. 29, 3219–3231 (2010)CrossRefMathSciNetGoogle Scholar
  21. Neyman, J.: Outline of a theory of statistical estimation based on the classical theory of probability. Philos. Trans. R. Soc. A 236, 333–380 (1937)CrossRefGoogle Scholar
  22. Neyman, J.: Frequentist probability and frequentist statistics. Synthese 36, 97–131 (1977)CrossRefzbMATHMathSciNetGoogle Scholar
  23. Pagano, R.R.: Understanding statistics in the behavioral sciences, 8th edn. Wadsworth Publishing Co Inc (1997)Google Scholar
  24. Rogers, J.L., Howard, K.I., Vessey, J.: Using significance tests to evaluate equivalence between two experimental groups. Psychol. Bull. 113, 553–565 (1993)CrossRefGoogle Scholar
  25. Rosnow, R.L., Rosenthal, R.: Computing contrasts, effect sizes, and counternulls on other people’s published data: general procedures for research consumers. Psychol. Methods 1, 331–340 (1996)CrossRefGoogle Scholar
  26. Savage, L.J.: On rereading R.A. Fisher. Ann. Stat. 4, 441–500 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  27. Schuirmann, D.J.: A comparison of the two one-sided tests procedure and the power approach for assessing the equivalence of average bioavailability. J. Pharmacokinet. Biop. 15, 657–680 (1987)CrossRefGoogle Scholar
  28. Smithson, M.: Correct confidence intervals for various regression effect sizes and parameters: The importance of noncentral distributions in computing intervals. Educ. Psychol. Meas. 61, 605–632 (2001)CrossRefMathSciNetGoogle Scholar
  29. Smithson, M.: Confidence Intervals. Sage, Thousand Oaks (2003)Google Scholar
  30. Smithson, M.: Statistics with Confidence (reprint). Sage, London (2005)Google Scholar
  31. Steiger, J.H., Fouladi, R.T.: Noncentrality interval estimation and the evaluation of statistical models. In: Harlow, L.L., Mulaik, S.A., Steiger, J.H. (eds.) What If There Were No Significance Tests?, pp. 221–257. Erlbaum, Hillsdale (1997)Google Scholar
  32. Steiger, J.H.: Beyond the F test: effect size confidence intervals and tests of close fit in the analysis of variance and contrast analysis. Psychol. Methods 9, 164–182 (2004)CrossRefGoogle Scholar
  33. Venables, W.: (1975): Calculation of confidence intervals for non-centrality parameters. J. R. Stat. Soc. B 37, 406–412 (1975)zbMATHMathSciNetGoogle Scholar
  34. Westlake, W.J.: Response to bioequivalence testing: a need to rethink (reader reaction response). Biometrics 37, 591–593 (1981)Google Scholar
  35. Zabell, S.L.: R. A. Fisher and the fiducial argument. Stat. Sci. 7, 369–387 (1992)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.ERIS, Laboratoire de Mathématiques Raphaël SalemUMR 6085, CNRS Université de RouenSaint-Étienne-du-RouvrayFrance
  2. 2.ERIS, IJLRA UMR-7190, CNRSUniversité Pierre et Marie CurieParisFrance

Personalised recommendations