Systemic Skeletal Diseases

  • Simone Waldt
  • Dirk Müller
  • Thomas Link


Osteopoikilosis is a rare and benign disease characterised by multiple round osteosclerotic lesions throughout the whole skeletal system.

Osteopoikilosis is asymptomatic and is usually found incidentally. In ca. 10–25% of cases, the disease is associated with various skin lesions. An autosomal dominant inheritance can be assumed based on family examinations. Osteosclerotic lesions show histological similarities to bone islands and osteoma (Chap. 36).

The radiographic appearance is pathognomonic: mostly periarticular, meta- and epiphyseal, multiple, round, or ovoid foci of sclerosis (Fig. 38.1). Predilection sites are the long tubular bones. Occurrences in the carpal and tarsal bones, pelvis, and scapula are also common. Although most lesions are constant over the course of time, they can also be dynamic, which means increasing or decreasing in size and number. As a rule lesions exhibit no increased activity on scintigraphy.

Differential diagnosis considerations include osteoblastic metastases, mastocytosis, and tuberous sclerosis. Usually the symmetric distribution, the periarticular location, and the typical morphology of lesions as well as the missing clinical symptoms allow for the correct diagnosis. Therefore, in most cases apart from conventional radiographs no additional imaging modalities are necessary. In doubtful cases particularly a normal bone scan may support the diagnosis.

Synonym: Voorhoeve disease.


Femoral Head Quantitative Compute Tomography Diffuse Idiopathic Skeletal Hyperostosis Systemic Mastocytosis Tubular Bone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



  1. Barnett E, Nordin B. The radiological diagnosis of osteoporosis: a new approach. Clin Radiol 1960;11:166–174CrossRefPubMedGoogle Scholar
  2. Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993;8:1137–1148CrossRefPubMedGoogle Scholar
  3. Meunier P, Bressot C, Vignon E, Edouard C, Alexandre C, Coupron P et al., Radiological and histological evolution of post-menopausal osteoporosis treated with sodium fluoride-vitamin D-calcium. Preliminary results. Bern: Hans Huber Publishers, 1978Google Scholar
  4. Minne H, Leidig G, Wüster C, et al. A newly developed spine deformity index (SDI) to quantitate vertebral crush fractures in patients with osteoporosis. Bone Miner 1988;3:335–349PubMedGoogle Scholar

Further Reading

  1. Albright F, Burnett C, Smith P, Parson W. Pseudohypoparathyroidism – an example of Seabright–Bantam syndrome. Endocrinology 1942;30:922Google Scholar
  2. Bogost G, Liserbram E, Crues J. MR imaging in evaluation of suspected hip fracture: frequency of unsuspected bone and soft-tissue injury. Radiology 1995;197:263–267CrossRefPubMedGoogle Scholar
  3. Cann C, Genant H, Kolb F, Ettinger B. Quantitative computed tomography for the prediction of vertebral body fracture risk. Bone 1985;6:1–7CrossRefPubMedGoogle Scholar
  4. Cummings S, Nevitt N, Browner W. Risk factors for hip fracture in white women. Study of Osteoporotic Fractures Research Group. N Engl J Med1995;332:767–763CrossRefPubMedGoogle Scholar
  5. Delling G. Neuere Vorstellungen zu Bau und Struktur der menschlichen Spongiosa-Ergebnisse einer zwei- und dreidimensionalen Analyse. Z gesamt inn Med 1989;44:536–540Google Scholar
  6. Felsenberg D, Gowin W. Knochendichtemessung mit Zwei-Spektren-Methoden. Radiologe 1999;39:186–193CrossRefPubMedGoogle Scholar
  7. Häussler B, Goethe H, Mangiapane S, Glaeske G, Podsiadlo P, Felsenberg D. Versorgung von Osteoporose-Patienten in Deutschland, Ergebnisse der Bone EVA-Studie. Deutsches Ärzteblatt 2006;103(39):2542–2548Google Scholar
  8. Heuck F. Qualitative und quantitative radiologische Analyse des Knochens. In: Schinz H (ed). Radiologische Diagnostik in Klinik und Praxis. Stuttgart, New York: Georg Thieme Verlag 1989Google Scholar
  9. Leidig-Bruckner G, Genant HK, Minne HW, et al., Comparison of a semiquantitative and a quantitative method for assessing vertebral fractures in osteoporosis. Bone 1994;15(4):437–442CrossRefGoogle Scholar
  10. Mayet W, Hermann E, Wandel E, et al., Rheumatologische und radiologische Symptome bei sekundärem Hyperparathyreoidismus: Retrospektive Langzeit-Studie bei 175 chronischen Dialysepatienten. Z Rheumatol 1991;50:313–319PubMedGoogle Scholar
  11. Parfitt AM. Trabecular bone architecture in the pathogenesis and prevention of fracture. Am J Med 1987;82(suppl.1B):68–72CrossRefPubMedGoogle Scholar
  12. Pfeilschifter J. 2006 DVO-guideline for prevention, diagnosis, and therapy of osteoporosis for women after menopause, for men after age 60 executive summary guidelines. Exp Clin Endocrinol Diabetes 2006;114(10):611–622PubMedGoogle Scholar
  13. Prevrhal S, Genant H. Quantitative Computertomographie. Radiologe 1999;39:194–202CrossRefPubMedGoogle Scholar
  14. Schulz G, Manns M. Ätiologie, Diagnostik und Therapie der Osteoporose. In: Schild HH, Heller M: Osteoporose. Stuttgart: Thieme-Verlag 1992:27–51Google Scholar
  15. Tigges S, Nance E, Carpenter W, Erb R. Renal osteodystrophy: imaging findings that mimic those of other diseases. Am J Roentgenol 1995;165:143–150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Simone Waldt
    • 1
  • Dirk Müller
    • 2
  • Thomas Link
    • 3
  1. 1.Diagnostische RadiologieKlinik für Radiologie und Neuroradiologie, Alfried Krupp KrankenhausEssenGermany
  2. 2.Institut für RadiologieKlinikum rechts der Isar der Technischen Universität MünchenMünchenGermany
  3. 3.Department of RadiologyUniversity of Southern CaliforniaLos Angeles, CAUSA

Personalised recommendations