Skip to main content

Imaging After Cornea Surgery

  • Chapter
  • First Online:
  • 1349 Accesses

Abstract

The cornea is an avascular tissue in the anterior portion of the globe that consists of six layers, including the epithelium, basement membrane, Bowman’s layer, stroma, Descemet’s membrane, and endothelium. The cornea measures approximately 400 μm in thickness centrally and features an intrinsic convex outward curvature, which provides light refraction. Corneal opacification is the second most common cause of blindness worldwide. In fact, according to the World Health Organization, glaucoma, age-related macular degeneration, and diabetic retinopathy are less common causes. Corneal opacification can result from postinfectious corneal scars, trauma, cicatrizing disorders (e.g., trachoma), nutritional deficiencies (e.g., vitamin A deficiency), and inherited disorders. Treatment options for corneal opacification include corneal transplantation, either penetrating (full-thickness) or lamellar (partial-thickness), or a corneal prosthetic device (keratoprosthesis). Cross-sectional imaging after keratoplasty is obtained when the cornea is opaque – from edema and graft failure or rejection, for example – and direct visualization of the anterior chamber and the fundus is not possible. Ultrasound biomicroscopy (UBM) is used to assess the anterior chamber and the drainage angle of the eye and B-scan ultrasound to evaluate the status of the vitreous and retina. Occasionally diagnostic imaging is performed to evaluate for postoperative complications. Otherwise, normal post-keratoplasty changes observed on CT or MRI can be incidental findings on diagnostic imaging performed for unrelated reasons. Imaging with CT or MRI is done after keratoprosthesis implantation to evaluate rare orbital complications of the procedure or to assess for tooth resorption in the case of the osteo-odonto-keratoprosthesis (OOKP). Corneal surgery can also be performed for correcting refractive errors of the eye, such as myopia, hyperopia, astigmatism, and presbyopia, usually with the goal of eliminating the need for glasses or contact lenses. This field is known as orthokeratology and encompasses numerous types of procedures. Laser-assisted in situ keratomileusis (LASIK) is the most widely performed method of refractive surgery. Other corneal refractive surgical procedures include laser thermal keratoplasty (LTK) and intrastromal corneal ring segments (Intacs). Complications after refractive cornea surgeries are generally diagnosed clinically; anterior segment optical coherence tomography (OCT) can serve as an adjunctive to diagnosis and planning for possible further interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Further Reading

  • Aiello LP, Javitt JC, Canner JK. National outcomes of penetrating keratoplasty. Risks of endophthalmitis and retinal detachment. Arch Ophthalmol. 1993;111(4):509–13.

    Article  CAS  PubMed  Google Scholar 

  • Ambrósio Jr R, Wilson S. LASIK vs LASEK vs PRK: advantages and indications. Semin Ophthalmol. 2003;18(1):2–10.

    Article  PubMed  Google Scholar 

  • Bluestone A, Ackert J, Som PM. The CT appearance of a corneal melt: report of 2 cases. AJNR Am J Neuroradiol. 2012;33(5):E72–3.

    Article  CAS  PubMed  Google Scholar 

  • Cameron JA, Antonios SR, Cotter JB, Habash NR. Endophthalmitis from contaminated donor corneas following penetrating keratoplasty. Arch Ophthalmol. 1991;109(1):54–9.

    Article  CAS  PubMed  Google Scholar 

  • Chen SH, Pineda 2nd R. Epithelial and fibrous downgrowth: mechanisms of disease. Ophthalmol Clin North Am. 2002;15(1):41–8.

    Article  PubMed  Google Scholar 

  • Chen MC, Cortés DE, Harocopos G, Mannis MJ. Epithelial downgrowth after penetrating keratoplasty: imaging by high-resolution optical coherence tomography and in vivo confocal microscopy. Cornea. 2013;32(11):1505–8.

    Article  PubMed  Google Scholar 

  • DelMonte DW, Kim T. Anatomy and physiology of the cornea. J Cataract Refract Surg. 2011;37(3):588–98.

    Article  PubMed  Google Scholar 

  • Guss RB, Koenig S, De La Pena W, Marx M, Kaufman HE. Endophthalmitis after penetrating keratoplasty. Am J Ophthalmol. 1983;95(5):651–8.

    Article  CAS  PubMed  Google Scholar 

  • Higashiura R, Maeda N, Nakagawa T, Fuchihata M, Koh S, Hori Y, Inoue T, Nishida K. Corneal topographic analysis by 3-dimensional anterior segment optical coherence tomography after endothelial keratoplasty. Invest Ophthalmol Vis Sci. 2012;53(7):3286–95.

    Article  PubMed  Google Scholar 

  • Hill JC. Treatment of simple hyperopia: comparison of laser in situ keratomileusis and laser thermal keratoplasty. J Cataract Refract Surg. 2003;29(5):912–7.

    Article  PubMed  Google Scholar 

  • Hirano K, Ito Y, Suzuki T, Kojima T, Kachi S, Miyake Y. Optical coherence tomography for the noninvasive evaluation of the cornea. Cornea. 2001;20(3):281–9.

    Article  CAS  PubMed  Google Scholar 

  • Hou P, Lu Y, Ye F, Lan W, Huang Z. Application of femtosecond laser in ocular surgery. Eye Sci. 2013;28(2):103–7.

    PubMed  Google Scholar 

  • Ingraham HJ, Donnenfeld ED, Perry HD. Massive suprachoroidal hemorrhage in penetrating keratoplasty. Am J Ophthalmol. 1989;108(6):670–5.

    Article  CAS  PubMed  Google Scholar 

  • Ivarsen A, Hjortdal J. Seven-year changes in corneal power and aberrations after PRK or LASIK. Invest Ophthalmol Vis Sci. 2012;53(10):6011–6.

    Article  PubMed  Google Scholar 

  • Kaluzny BJ, Szkulmowski M, Bukowska DM, Wojtkowski M. Spectral OCT with speckle contrast reduction for evaluation of the healing process after PRK and transepithelial PRK. Biomed Opt Express. 2014;5(4):1089–98.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kamyar R, Weizer JS, de Paula FH, Stein JD, Moroi SE, John D, Musch DC, Mian SI. Glaucoma associated with Boston type I keratoprosthesis. Cornea. 2012;31(2):134–9.

    Article  PubMed Central  PubMed  Google Scholar 

  • Kang JJ, Allemann N, Vajaranant T, de la Cruz J, Cortina MS. Anterior segment optical coherence tomography for the quantitative evaluation of the anterior segment following Boston keratoprosthesis. PLoS One. 2013;8(8):e70673.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Khan B, Dudenhoefer EJ, Dohlman CH. Keratoprosthesis: an update. Curr Opin Ophthalmol. 2001;12(4):282–7.

    Article  CAS  PubMed  Google Scholar 

  • Leveille AS, McMullan FD, Cavanagh HD. Endophthalmitis following penetrating keratoplasty. Ophthalmology. 1983;90(1):38–9.

    Article  CAS  PubMed  Google Scholar 

  • Lim LS, Aung HT, Aung T, Tan DT. Corneal imaging with anterior segment optical coherence tomography for lamellar keratoplasty procedures. Am J Ophthalmol. 2008;145(1):81–90.

    Article  PubMed  Google Scholar 

  • Lim LS, Ang CL, Wong E, Wong DW, Tan DT. Vitreoretinal complications and vitreoretinal surgery in osteo-odonto-keratoprosthesis surgery. Am J Ophthalmol. 2014;157(2):349–54.

    Article  PubMed  Google Scholar 

  • Linebarger EJ, Hardten DR, Lindstrom RL. Diffuse lamellar keratitis: diagnosis and management. J Cataract Refract Surg. 2000;26(7):1072–7.

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Paul B, Tandon R, Lee E, Fong K, Mavrikakis I, Herold J, Thorp S, Brittain P, Francis I, Ferrett C, Hull C, Lloyd A, Green D, Franklin V, Tighe B, Fukuda M, Hamada S. The osteo-odonto-keratoprosthesis (OOKP). Semin Ophthalmol. 2005;20(2):113–28.

    Article  PubMed  Google Scholar 

  • Maddox RA, Belay ED, Curns AT, Zou WQ, Nowicki S, Lembach RG, Geschwind MD, Haman A, Shinozaki N, Nakamura Y, Borer MJ, Schonberger LB. Creutzfeldt-Jakob disease in recipients of corneal transplants. Cornea. 2008;27(7):851–4.

    Article  PubMed  Google Scholar 

  • Mamalis N, Edelhauser HF, Dawson DG, Chew J, LeBoyer RM, Werner L. Toxic anterior segment syndrome. J Cataract Refract Surg. 2006;32(2):324–33.

    Article  PubMed  Google Scholar 

  • Melki SA, Azar DT. LASIK complications: etiology, management, and prevention. Surv Ophthalmol. 2001;46(2):95–116.

    Article  CAS  PubMed  Google Scholar 

  • Moshfeghi DM, Kim BY, Kaiser PK, Sears JE, Smith SD. Appositional suprachoroidal hemorrhage: a case-control study. Am J Ophthalmol. 2004;138(6):959–63.

    Article  PubMed  Google Scholar 

  • Moshirfar M, Smedley JG, Muthappan V, Jarsted A, Ostler EM. Rate of ectasia and incidence of irregular topography in patients with unidentified preoperative risk factors undergoing femtosecond laser-assisted LASIK. Clin Ophthalmol. 2014;8:35–42.

    PubMed Central  PubMed  Google Scholar 

  • Nesi TT, Leite DA, Rocha FM, Tanure MA, Reis PP, Rodrigues EB, Campos MS. Indications of optical coherence tomography in keratoplasties: literature review. J Ophthalmol. 2012;2012:989063.

    Article  PubMed Central  PubMed  Google Scholar 

  • Niederkorn JY. Mechanisms of corneal graft rejection: the sixth annual Thygeson Lecture, presented at the Ocular Microbiology and Immunology Group meeting, October 21, 2000. Cornea. 2001;20(7):675–9.

    Article  CAS  PubMed  Google Scholar 

  • Park CY, Ji YH, Chung ES. Changes in keratometric corneal power and refractive error after laser thermal keratoplasty. J Cataract Refract Surg. 2004;30(4):867–72.

    Article  PubMed  Google Scholar 

  • Price Jr FW, Whitson WE, Ahad KA, Tavakkoli H. Suprachoroidal hemorrhage in penetrating keratoplasty. Ophthalmic Surg. 1994;25(8):521–5.

    PubMed  Google Scholar 

  • Priglinger SG, Neubauer AS, May CA, Alge CS, Wolf AH, Mueller A, Ludwig K, Kampik A, Welge-Luessen U. Optical coherence tomography for the detection of laser in situ keratomileusis in donor corneas. Cornea. 2003;22(1):46–50.

    Article  PubMed  Google Scholar 

  • Purcell Jr JJ, Krachmer JH, Doughman DJ, Bourne WM. Expulsive hemorrhage in penetrating keratoplasty. Ophthalmology. 1982;89(1):41–3.

    Article  PubMed  Google Scholar 

  • Rabinstein AA, Whiteman ML, Shebert RT. Abnormal diffusion-weighted magnetic resonance imaging in Creutzfeldt-Jakob disease following corneal transplantations. Arch Neurol. 2002;59(4):637–9.

    Article  PubMed  Google Scholar 

  • Rahman I, Carley F, Hillarby C, Brahma A, Tullo AB. Penetrating keratoplasty: indications, outcomes, and complications. Eye (Lond). 2009;23(6):1288–94.

    Article  CAS  Google Scholar 

  • Robert MC, Pomerleau V, Harissi-Dagher M. Complications associated with Boston keratoprosthesis type 1 and glaucoma drainage devices. Br J Ophthalmol. 2013;97(5):573–7.

    Article  PubMed  Google Scholar 

  • Schechter BA, Rand WJ, Nagler RS, Estrin I, Arnold SS, Villate N, Velazquez GE. Corneal melt after amniotic membrane transplant. Cornea. 2005;24(1):106–7.

    Article  PubMed  Google Scholar 

  • Shapiro BL, Cortés DE, Chin EK, Li JY, Werner JS, Redenbo E, Mannis MJ. High-resolution spectral domain anterior segment optical coherence tomography in type 1 Boston keratoprosthesis. Cornea. 2013;32(7):951–5.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shehadeh Mashor R, Bahar I, Rootman DB, Kumar NL, Singal N, Slomovic AR, Rootman DS. Zig Zag versus Top Hat configuration in IntraLase-enabled penetrating keratoplasty. Br J Ophthalmol. 2014;98:756–9.

    Article  PubMed  Google Scholar 

  • Sipkova Z, Lam FC, Francis I, Herold J, Liu C. Serial 3-dimensional computed tomography and a novel method of volumetric analysis for the evaluation of the osteo-odonto-keratoprosthesis. Cornea. 2013;32(4):401–6.

    Article  PubMed  Google Scholar 

  • Speaker MG, Guerriero PN, Met JA, Coad CT, Berger A, Marmor M. A case-control study of risk factors for intraoperative suprachoroidal expulsive hemorrhage. Ophthalmology. 1991;98(2):202–9.

    Article  CAS  PubMed  Google Scholar 

  • Stoiber J, Forstner R, Csáky D, Ruckhofer J, Grabner G. Evaluation of bone reduction in osteo-odontokeratoprosthesis (OOKP) by three-dimensional computed tomography. Cornea. 2003;22(2):126–30.

    Article  PubMed  Google Scholar 

  • Suh LH, Yoo SH, Deobhakta A, Donaldson KE, Alfonso EC, Culbertson WW, O’Brien TP. Complications of Descemet’s stripping with automated endothelial keratoplasty: survey of 118 eyes at One Institute. Ophthalmology. 2008;115(9):1517–24.

    Article  PubMed  Google Scholar 

  • Taneri S, Zieske JD, Azar DT. Evolution, techniques, clinical outcomes, and pathophysiology of LASEK: review of the literature. Surv Ophthalmol. 2004;49(6):576–602.

    Article  PubMed  Google Scholar 

  • Torquetti L, Berbel RF, Ferrara P. Long-term follow-up of intrastromal corneal ring segments in keratoconus. J Cataract Refract Surg. 2009;35(10):1768–73.

    Article  PubMed  Google Scholar 

  • Tugal-Tutkun I, Akova YA, Foster CS. Penetrating keratoplasty in cicatrizing conjunctival diseases. Ophthalmology. 1995;102(4):576–85.

    Article  CAS  PubMed  Google Scholar 

  • Ustundag C, Bahcecioglu H, Ozdamar A, Aras C, Yildirim R, Ozkan S. Optical coherence tomography for evaluation of anatomical changes in the cornea after laser in situ keratomileusis. J Cataract Refract Surg. 2000;26(10):1458–62.

    Article  CAS  PubMed  Google Scholar 

  • Vargas LG, Vroman DT, Solomon KD, Holzer MP, Escobar-Gomez M, Schmidbauer JM, Apple DJ. Epithelial downgrowth after clear cornea phacoemulsification: report of two cases and review of the literature. Ophthalmology. 2002;109(12):2331–5.

    Article  PubMed  Google Scholar 

  • Wang MY, Maloney RK. Epithelial ingrowth after laser in situ keratomileusis. Am J Ophthalmol. 2000;129(6):746–51.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Chen YG, Xia YJ. Comparison of corneal flap morphology using AS-OCT in LASIK with the WaveLight FS200 femtosecond laser versus a mechanical microkeratome. J Refract Surg. 2013;29(5):320–4.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Thomas Ginat MD, MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palioura, S., Ashrafzadeh, A., Ginat, D.T., Chodosh, J. (2015). Imaging After Cornea Surgery. In: Ginat, D., Freitag, S. (eds) Post-treatment Imaging of the Orbit. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44023-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44023-0_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44022-3

  • Online ISBN: 978-3-662-44023-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics