Introduction to Approaches and Modalities in Postoperative Orbital Imaging

  • Daniel Thomas Ginat
  • Amin Ashrafzadeh
  • Suzanne K. Freitag


Determining if and when diagnostic imaging is required following ophthalmic and orbital surgery is very much an art. The primary radiological imaging modalities include radiography, computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound. Each of these modalities has certain advantages and disadvantages as described below. Often the different imaging modalities serve complementary roles, and familiarity with each of these is important for optimal management. In many cases, the indications and suitable modalities are similar to those for preoperative imaging, and the ACR Appropriateness Criteria® orbits, vision and visual loss offers general guidelines. More detailed information is also provided in the subsequent chapters in this text. Ultimately, familiarity with the basic anatomy of the eye and orbit and the alterations that may result after treatment is critical for interpreting the imaging studies.


Optical Coherence Tomography Central Corneal Thickness Ultrasound Biomicroscopy Subsequent Chapter Lacrimal Drainage System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Further Reading

  1. Bailey CC, Kabala J, Laitt R, Weston M, Goddard P, Hoh HB, Potts MJ, Harrad RA. Cine magnetic resonance imaging of eye movements. Eye (Lond). 1993;7(Pt 5):691–3.CrossRefGoogle Scholar
  2. Bedi DG, Gombos DS, Ng CS, Singh S. Sonography of the eye. AJR Am J Roentgenol. 2006;187(4):1061–72.PubMedCrossRefGoogle Scholar
  3. Belden CJ, Zinreich SJ. Orbital imaging techniques. Semin Ultrasound CT MR. 1997;18(6):413–22.PubMedCrossRefGoogle Scholar
  4. Berg I, Palmowski-Wolfe A, Schwenzer-Zimmerer K, Kober C, Radue EW, Zeilhofer HF, Scheffler K, Kunz C, Buitrago-Tellez C. Near-real time oculodynamic MRI: a feasibility study for evaluation of diplopia in comparison with clinical testing. Eur Radiol. 2012;22(2):358–63.PubMedCrossRefGoogle Scholar
  5. Chen J, Lee L. Clinical applications and new developments of optical coherence tomography: an evidence-based review. Clin Exp Optom. 2007;90(5):317–35.PubMedCrossRefGoogle Scholar
  6. Fledelius HC. Ultrasound in ophthalmology. Ultrasound Med Biol. 1997;23(3):365–75.PubMedCrossRefGoogle Scholar
  7. Francisco FC, Carvalho AC, Francisco VF, Francisco MC, Neto GT. Evaluation of 1000 lacrimal ducts by dacryocystography. Br J Ophthalmol. 2007;91(1):43–6.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Freitag SK, Sergott RC. Color Doppler imaging in ophthalmology. In: Tasman W, Jaeger EA, editors. Foundations of clinical ophthalmology. Philadelphia: Lippincott-Raven; 2000.Google Scholar
  9. Georgouli T, Chang B, Nelson M, James T, Tanner S, Shelley D, Saldana M, McGonagle D. Use of high-resolution microscopy coil MRI for depicting orbital anatomy. Orbit. 2008;27(2):107–14.PubMedCrossRefGoogle Scholar
  10. Goh PS, Gi MT, Charlton A, Tan C, GangadharaSundar JK, Amrith S. Review of orbital imaging. Eur J Radiol. 2008;66(3):387–95.PubMedCrossRefGoogle Scholar
  11. ACR Appropriateness Criteria® orbits, vision and visual loss. Accessed on 20 August 2014.
  12. Accessed on 20 August 2014.
  13. Huang LL, Hirose T. Portable optical coherence tomography in management of vitreoretinal diseases: current developments, indications, and implications. Semin Ophthalmol. 2012;27(5–6):213–20.PubMedCrossRefGoogle Scholar
  14. Kiessling F, Fokong S, Koczera P, Lederle W, Lammers T. Ultrasound microbubbles for molecular diagnosis, therapy, and theranostics. J Nucl Med. 2012;53(3):345–8.PubMedCrossRefGoogle Scholar
  15. Konstantopoulos A, Hossain P, Anderson DF. Recent advances in ophthalmic anterior segment imaging: a new era for ophthalmic diagnosis? Br J Ophthalmol. 2007;91(4):551–7.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Lee AG, Brazis PW, Garrity JA, White M. Imaging for neuro-ophthalmic and orbital disease. Am J Ophthalmol. 2004;138(5):852–62.PubMedCrossRefGoogle Scholar
  17. Lee AG, Johnson MC, Policeni BA, Smoker WR. Imaging for neuro-ophthalmic and orbital disease – a review. Clin Experiment Ophthalmol. 2009;37(1):30–53.PubMedCrossRefGoogle Scholar
  18. Lieb WE. Color Doppler imaging of the eye and orbit. Radiol Clin North Am. 1998;36(6):1059–71.PubMedCrossRefGoogle Scholar
  19. Liebmann JM, Ritch R. Ultrasound biomicroscopy of the anterior segment. J Am Optom Assoc. 1996;67(8):469–79.PubMedGoogle Scholar
  20. Nesi TT, Leite DA, Rocha FM, Tanure MA, Reis PP, Rodrigues EB, Campos MS. Indications of optical coherence tomography in keratoplasties: literature review. J Ophthalmol. 2012;2012:989063.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Testoni PA. Optical coherence tomography. Sci World J. 2007;7:87–108.CrossRefGoogle Scholar
  22. Williamson TH, Harris A. Color Doppler ultrasound imaging of the eye and orbit. Surv Ophthalmol. 1996;40(4):255–67.PubMedCrossRefGoogle Scholar
  23. Wu AY, Jebodhsingh K, Le T, Law C, Tucker NA, DeAngelis DD, Oestreicher JH, Harvey JT. Indications for orbital imaging by the oculoplastic surgeon. Ophthal Plast Reconstr Surg. 2011;27(4):260–2.PubMedCrossRefGoogle Scholar
  24. Zysk AM, Nguyen FT, Oldenburg AL, Marks DL, Boppart SA. Optical coherence tomography: a review of clinical development from bench to bedside. J Biomed Opt. 2007;12(5):051403.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Daniel Thomas Ginat
    • 1
  • Amin Ashrafzadeh
    • 2
  • Suzanne K. Freitag
    • 3
  1. 1.Head and Neck Imaging, Department of RadiologyUniversity of ChicagoChicagoUSA
  2. 2.Modesto Eye CenterModestoUSA
  3. 3.Ophthalmic Plastic Surgery Service, Department of OphthalmologyMassachusetts Eye and Ear Infirmary, Harvard Medical SchoolBostonUSA

Personalised recommendations