Skip to main content

Flow Cytometry in Cancer Immunotherapy: Applications, Quality Assurance, and Future

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Cancer immunotherapy seeks to elicit or augment the antitumor immune response in a patient in order to enlist the help of the patient’s own immune system for tumor control. In this context, immune monitoring provides evidence of immunogenicity, guides the choice and dosage of antigens, assesses the effects of immune modulators and therapy combinations, and has the potential to reveal early biomarkers of clinical efficacy. In view of their role in the anticancer immune response, the quantity and quality of tumor antigen-specific effector CD4+ and CD8+ T cells are of particular interest, and characterization of regulatory T cells and myeloid-derived suppressor cells is increasingly relevant. The canonical multiparameter assay for the characterization of immune cells is polychromatic flow cytometry, and it is ubiquitously used for immune monitoring in preclinical tumor immunology and in cancer immunotherapy trials. This chapter describes the main flow cytometry methods being applied in cancer immunotherapy, with an emphasis on recent progress in the field, challenges associated with quality control, its promise to reveal biomarkers of clinical efficacy, and further developments that are likely to be rapidly implemented in routine cancer immunology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zola H, Swart B, Banham A, Barry S, Beare A, Bensussan A, et al. CD molecules 2006 – human cell differentiation molecules. J Immunol Methods. 2007;319(1–2):1–5.

    CAS  PubMed  Google Scholar 

  2. Van Damme N, Baeten D, De Vos M, Demetter P, Elewaut D, Mielants H, et al. Chemical agents and enzymes used for the extraction of gut lymphocytes influence flow cytometric detection of T cell surface markers. J Immunol Methods. 2000;236(1–2):27–35.

    PubMed  Google Scholar 

  3. Donnenberg VS, Landreneau RJ, Pfeifer ME, Donnenberg AD. Flow cytometric determination of stem/progenitor content in epithelial tissues: an example from nonsmall lung cancer and normal lung. Cytom A. 2013;83(1):141–9.

    Google Scholar 

  4. Walter S, Weinschenk T, Stenzl A, Zdrojowy R, Pluzanska A, Szczylik C, et al. Multipeptide immune response to cancer vaccine IMA901 after single-dose cyclophosphamide associates with longer patient survival. Nat Med. 2012;18:1254–61.

    CAS  PubMed  Google Scholar 

  5. Hamann D, Baars PA, Rep MH, Hooibrink B, Kerkhof-Garde SR, Klein MR, et al. Phenotypic and functional separation of memory and effector human CD8+ T cells. J Exp Med. 1997;186(9):1407–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Caruso A, Licenziati S, Corulli M, Canaris AD, De Francesco MA, Fiorentini S, et al. Flow cytometric analysis of activation markers on stimulated T cells and their correlation with cell proliferation. Cytometry. 1997;27(1):71–6.

    CAS  PubMed  Google Scholar 

  7. Chattopadhyay PK, Roederer M. Good cell, bad cell: flow cytometry reveals T-cell subsets important in HIV disease. Cytom A. 2010;77(7):614–22.

    Google Scholar 

  8. Zielinski CE, Corti D, Mele F, Pinto D, Lanzavecchia A, Sallusto F. Dissecting the human immunologic memory for pathogens. Immunol Rev. 2011;240(1):40–51.

    CAS  PubMed  Google Scholar 

  9. de Vos van Steenwijk PJ, Heusinkveld M, Ramwadhdoebe TH, Lowik MJ, van der Hulst JM, Goedemans R, et al. An unexpectedly large polyclonal repertoire of HPV-specific T cells is poised for action in patients with cervical cancer. Cancer Res. 2010;70(7):2707–17.

    Google Scholar 

  10. Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, et al. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol. 2007;178(7):4112–9.

    CAS  PubMed  Google Scholar 

  11. Gattinoni L, Lugli E, Ji Y, Pos Z, Paulos CM, Quigley MF, et al. A human memory T cell subset with stem cell-like properties. Nat Med. 2011;17(10):1290–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Sallusto F, Lenig D, Forster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708–12.

    CAS  PubMed  Google Scholar 

  13. Appay V, van Lier RA, Sallusto F, Roederer M. Phenotype and function of human T lymphocyte subsets: consensus and issues. Cytom A. 2008;73(11):975–83.

    Google Scholar 

  14. Derhovanessian E, Maier AB, Hahnel K, Beck R, de Craen AJ, Slagboom EP, et al. Infection with cytomegalovirus but not herpes simplex virus induces the accumulation of late-differentiated CD4+ and CD8+ T-cells in humans. J Gen Virol. 2011;92(Pt 12):2746–56.

    CAS  PubMed  Google Scholar 

  15. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, et al. Phenotypic analysis of antigen-specific T lymphocytes. Science. 1996;274(5284):94–6.

    CAS  PubMed  Google Scholar 

  16. Melenhorst JJ, Scheinberg P, Chattopadhyay PK, Lissina A, Gostick E, Cole DK, et al. Detection of low avidity CD8(+) T cell populations with coreceptor-enhanced peptide-major histocompatibility complex class I tetramers. J Immunol Methods. 2008;338(1–2):31–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Chattopadhyay PK, Melenhorst JJ, Ladell K, Gostick E, Scheinberg P, Barrett AJ, et al. Techniques to improve the direct ex vivo detection of low frequency antigen-specific CD8+ T cells with peptide-major histocompatibility complex class I tetramers. Cytom A. 2008;73(11):1001–9.

    Google Scholar 

  18. Wooldridge L, Lissina A, Cole DK, van den Berg HA, Price DA, Sewell AK. Tricks with tetramers: how to get the most from multimeric peptide-MHC. Immunology. 2009;126(2):147–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Slingluff Jr CL, Petroni GR, Olson WC, Smolkin ME, Ross MI, Haas NB, et al. Effect of granulocyte/macrophage colony-stimulating factor on circulating CD8+ and CD4+ T-cell responses to a multipeptide melanoma vaccine: outcome of a multicenter randomized trial. Clin Cancer Res. 2009;15(22):7036–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Speiser DE, Lienard D, Rufer N, Rubio-Godoy V, Rimoldi D, Lejeune F, et al. Rapid and strong human CD8+ T cell responses to vaccination with peptide, IFA, and CpG oligodeoxynucleotide 7909. J Clin Invest. 2005;115(3):739–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Coulie PG, Karanikas V, Colau D, Lurquin C, Landry C, Marchand M, et al. A monoclonal cytolytic T-lymphocyte response observed in a melanoma patient vaccinated with a tumor-specific antigenic peptide encoded by gene MAGE-3. Proc Natl Acad Sci U S A. 2001;98(18):10290–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Filipazzi P, Pilla L, Mariani L, Patuzzo R, Castelli C, Camisaschi C, et al. Limited induction of tumor cross-reactive T cells without a measurable clinical benefit in early melanoma patients vaccinated with human leukocyte antigen class I-modified peptides. Clin Cancer Res. 2012;18(23):6485–96.

    CAS  PubMed  Google Scholar 

  23. Appay V, Dunbar PR, Callan M, Klenerman P, Gillespie GM, Papagno L, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8(4):379–85.

    CAS  PubMed  Google Scholar 

  24. Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, et al. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest. 2011;121(6):2350–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Davis C, Wu X, Li W, Fan H, Reddy M. Stability of immunophenotypic markers in fixed peripheral blood for extended analysis using flow cytometry. J Immunol Methods. 2011;363(2):158–65.

    CAS  PubMed  Google Scholar 

  26. Cecconi V, Moro M, Del Mare S, Dellabona P, Casorati G. Use of MHC class II tetramers to investigate CD4+ T cell responses: problems and solutions. Cytom A. 2008;73(11):1010–8.

    Google Scholar 

  27. Widenmeyer M, Griesemann H, Stevanovic S, Feyerabend S, Klein R, Attig S, et al. Promiscuous survivin peptide induces robust CD4+ T-cell responses in the majority of vaccinated cancer patients. Int J Cancer. 2012;131(1):140–9.

    CAS  PubMed  Google Scholar 

  28. Welters MJ, Kenter GG, de Vos van Steenwijk PJ, Lowik MJ, Berends-van der Meer DM, Essahsah F, et al. Success or failure of vaccination for HPV16-positive vulvar lesions correlates with kinetics and phenotype of induced T-cell responses. Proc Natl Acad Sci U S A. 2010;107(26):11895–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Weide B, Zelba H, Derhovanessian E, Pflugfelder A, Eigentler TK, Di Giacomo AM, et al. Functional T cells targeting NY-ESO-1 or Melan-A are predictive for survival of patients with distant melanoma metastasis. J Clin Oncol. 2012;30(15):1835–41.

    CAS  PubMed  Google Scholar 

  30. Seder RA, Darrah PA, Roederer M. T-cell quality in memory and protection: implications for vaccine design. Nat Rev Immunol. 2008;8(4):247–58.

    CAS  PubMed  Google Scholar 

  31. Precopio ML, Betts MR, Parrino J, Price DA, Gostick E, Ambrozak DR, et al. Immunization with vaccinia virus induces polyfunctional and phenotypically distinctive CD8(+) T cell responses. J Exp Med. 2007;204(6):1405–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Attig S, Hennenlotter J, Pawelec G, Klein G, Koch SD, Pircher H, et al. Simultaneous infiltration of polyfunctional effector and suppressor T cells into renal cell carcinomas. Cancer Res. 2009;69(21):8412–9.

    CAS  PubMed  Google Scholar 

  33. Yuan J, Gnjatic S, Li H, Powel S, Gallardo HF, Ritter E, et al. CTLA-4 blockade enhances polyfunctional NY-ESO-1 specific T cell responses in metastatic melanoma patients with clinical benefit. Proc Natl Acad Sci U S A. 2008;105(51):20410–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Bull M, Lee D, Stucky J, Chiu YL, Rubin A, Horton H, et al. Defining blood processing parameters for optimal detection of cryopreserved antigen-specific responses for HIV vaccine trials. J Immunol Methods. 2007;322(1–2):57–69.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Lamoreaux L, Roederer M, Koup R. Intracellular cytokine optimization and standard operating procedure. Nat Protoc. 2006;1(3):1507–16.

    CAS  PubMed  Google Scholar 

  36. Singh SK, Meyering M, Ramwadhdoebe TH, Stynenbosch LF, Redeker A, Kuppen PJ, et al. The simultaneous ex vivo detection of low-frequency antigen-specific CD4+ and CD8+ T-cell responses using overlapping peptide pools. Cancer Immunol Immunother. 2012;61(11):1953–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Hermans IF, Silk JD, Yang J, Palmowski MJ, Gileadi U, McCarthy C, et al. The VITAL assay: a versatile fluorometric technique for assessing CTL- and NKT-mediated cytotoxicity against multiple targets in vitro and in vivo. J Immunol Methods. 2004;285(1):25–40.

    CAS  PubMed  Google Scholar 

  38. Zaritskaya L, Shurin MR, Sayers TJ, Malyguine AM. New flow cytometric assays for monitoring cell-mediated cytotoxicity. Expert Rev Vaccines. 2010;9(6):601–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Laske K, Shebzukhov YV, Grosse-Hovest L, Kuprash DV, Khlgatian SV, Koroleva EP, et al. Alternative variants of human HYDIN are novel cancer-associated antigens recognized by adaptive immunity. Cancer Immunol Res. 2013;1(3):190–200.

    Google Scholar 

  40. Betts MR, Brenchley JM, Price DA, De Rosa SC, Douek DC, Roederer M, et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J Immunol Methods. 2003;281(1–2):65–78.

    CAS  PubMed  Google Scholar 

  41. Lyons AB, Blake SJ, Doherty KV. Flow cytometric analysis of cell division by dilution of CFSE and related dyes. Curr Protoc Cytom. 2013. Chapter 9:Unit9.11.

    Google Scholar 

  42. Soares A, Govender L, Hughes J, Mavakla W, de Kock M, Barnard C, et al. Novel application of Ki67 to quantify antigen-specific in vitro lymphoproliferation. J Immunol Methods. 2010;362(1–2):43–50.

    Google Scholar 

  43. Putz T, Ramoner R, Gander H, Rahm A, Bartsch G, Holtl L, et al. Monitoring of CD4+ and CD8+ T-cell responses after dendritic cell-based immunotherapy using CFSE dye dilution analysis. J Clin Immunol. 2004;24(6):653–63.

    PubMed  Google Scholar 

  44. Maino VC, Maecker HT. Cytokine flow cytometry: a multiparametric approach for assessing cellular immune responses to viral antigens. Clin Immunol. 2004;110(3):222–31.

    CAS  PubMed  Google Scholar 

  45. Defawe OD, Fong Y, Vasilyeva E, Pickett M, Carter DK, Gabriel E, et al. Optimization and qualification of a multiplex bead array to assess cytokine and chemokine production by vaccine-specific cells. J Immunol Methods. 2012;382(1–2):117–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Pohla H, Buchner A, Stadlbauer B, Frankenberger B, Stevanovic S, Walter S, et al. High immune response rates and decreased frequencies of regulatory T cells in metastatic renal cell carcinoma patients after tumor cell vaccination. Mol Med. 2012;18:1499–508.

    CAS  PubMed Central  Google Scholar 

  47. Aubin JE. Autofluorescence of viable cultured mammalian cells. J Histochem Cytochem. 1979;27(1):36–43.

    CAS  PubMed  Google Scholar 

  48. Roederer M, Murphy RF. Cell-by-cell autofluorescence correction for low signal-to-noise systems: application to epidermal growth factor endocytosis by 3T3 fibroblasts. Cytometry. 1986;7(6):558–65.

    CAS  PubMed  Google Scholar 

  49. Truneh A, Machy P. Detection of very low receptor numbers on cells by flow cytometry using a sensitive staining method. Cytometry. 1987;8(6):562–7.

    CAS  PubMed  Google Scholar 

  50. Perfetto SP, Chattopadhyay PK, Roederer M. Seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol. 2004;4(8):648–55.

    CAS  PubMed  Google Scholar 

  51. Baumgarth N, Roederer M. A practical approach to multicolor flow cytometry for immunophenotyping. J Immunol Methods. 2000;243(1–2):77–97.

    CAS  PubMed  Google Scholar 

  52. Perfetto SP, Roederer M. Increased immunofluorescence sensitivity using 532 nm laser excitation. Cytom A. 2007;71(2):73–9.

    Google Scholar 

  53. Nguyen R, Perfetto S, Mahnke YD, Chattopadhyay P, Roederer M. Quantifying spillover spreading for comparing instrument performance and aiding in multicolor panel design. Cytom A. 2013;83(3):306–15.

    Google Scholar 

  54. Mahnke YD, Roederer M. Optimizing a multicolor immunophenotyping assay. Clin Lab Med. 2007;27(3):469–85. v.

    PubMed Central  PubMed  Google Scholar 

  55. Lundberg E, Sundberg M, Graslund T, Uhlen M, Svahn HA. A novel method for reproducible fluorescent labeling of small amounts of antibodies on solid phase. J Immunol Methods. 2007;322(1–2):40–9.

    CAS  PubMed  Google Scholar 

  56. Buchwalow IB, Böcker W. Antibody labeling and the choice of label immunohistochemistry basics and methods. Heidelberg: Springer; 2010. p. 9–12.

    Google Scholar 

  57. Roederer M, Tarnok A. OMIPs – orchestrating multiplexity in polychromatic science. Cytom A. 2010;77(9):811–2.

    Google Scholar 

  58. Perfetto SP, Ambrozak D, Nguyen R, Chattopadhyay PK, Roederer M. Quality assurance for polychromatic flow cytometry using a suite of calibration beads. Nat Protoc. 2012;7(12):2067–79.

    CAS  PubMed  Google Scholar 

  59. Nomura L, Maino VC, Maecker HT. Standardization and optimization of multiparameter intracellular cytokine staining. Cytom A. 2008;73(11):984–91.

    Google Scholar 

  60. Singh SK, Tummers B, Schumacher TN, Gomez R, Franken KL, Verdegaal EM, et al. The development of standard samples with a defined number of antigen-specific T cells to harmonize T cell assays: a proof-of-principle study. Cancer Immunol Immunother. 2013;62(3):489–501.

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Fox BA, Schendel DJ, Butterfield LH, Aamdal S, Allison JP, Ascierto PA, et al. Defining the critical hurdles in cancer immunotherapy. J Transl Med. 2011;9(1):214.

    PubMed Central  PubMed  Google Scholar 

  62. van der Burg SH, Kalos M, Gouttefangeas C, Janetzki S, Ottensmeier C, Welters MJ, et al. Harmonization of immune biomarker assays for clinical studies. Sci Transl Med. 2011;3(108):108ps44.

    PubMed  Google Scholar 

  63. de Vries IJ, Bernsen MR, Lesterhuis WJ, Scharenborg NM, Strijk SP, Gerritsen MJ, et al. Immunomonitoring tumor-specific T cells in delayed-type hypersensitivity skin biopsies after dendritic cell vaccination correlates with clinical outcome. J Clin Oncol. 2005;23(24):5779–87.

    PubMed  Google Scholar 

  64. Slingluff Jr CL, Petroni GR, Chianese-Bullock KA, Smolkin ME, Hibbitts S, Murphy C, et al. Immunologic and clinical outcomes of a randomized phase II trial of two multipeptide vaccines for melanoma in the adjuvant setting. Clin Cancer Res. 2007;13(21):6386–95.

    CAS  PubMed  Google Scholar 

  65. Kirkwood JM, Lee S, Moschos SJ, Albertini MR, Michalak JC, Sander C, et al. Immunogenicity and antitumor effects of vaccination with peptide vaccine+/-granulocyte-monocyte colony-stimulating factor and/or IFN-alpha2b in advanced metastatic melanoma: Eastern Cooperative Oncology Group phase II trial E1696. Clin Cancer Res. 2009;15(4):1443–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Dangoor A, Lorigan P, Keilholz U, Schadendorf D, Harris A, Ottensmeier C, et al. Clinical and immunological responses in metastatic melanoma patients vaccinated with a high-dose poly-epitope vaccine. Cancer Immunol Immunother. 2010;59(6):863–73.

    CAS  PubMed  Google Scholar 

  67. Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011;3(95):95ra73.

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Britten CM, Janetzki S, van der Burg SH, Gouttefangeas C, Hoos A. Toward the harmonization of immune monitoring in clinical trials: quo vadis? Cancer Immunol Immunother. 2008;57(3):285–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Scheibenbogen C, Romero P, Rivoltini L, Herr W, Schmittel A, Cerottini JC, et al. Quantitation of antigen-reactive T cells in peripheral blood by IFNgamma-ELISPOT assay and chromium-release assay: a four-centre comparative trial. J Immunol Methods. 2000;244(1–2):81–9.

    CAS  PubMed  Google Scholar 

  70. Cox JH, Ferrari G, Kalams SA, Lopaczynski W, Oden N, D’souza MP. Results of an ELISPOT proficiency panel conducted in 11 laboratories participating in international human immunodeficiency virus type 1 vaccine trials. AIDS Res Hum Retrovir. 2005;21(1):68–81.

    CAS  PubMed  Google Scholar 

  71. Jaimes MC, Maecker HT, Yan M, Maino VC, Hanley MB, Greer A, et al. Quality assurance of intracellular cytokine staining assays: analysis of multiple rounds of proficiency testing. J Immunol Methods. 2011;363(2):143–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Mander A, Gouttefangeas C, Ottensmeier C, Welters MJ, Low L, van der Burg SH, et al. Serum is not required for ex vivo IFN-gamma ELISPOT: a collaborative study of different protocols from the European CIMT immunoguiding program. Cancer Immunol Immunother. 2010;59(4):619–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  73. Welters MJ, Gouttefangeas C, Ramwadhdoebe TH, Letsch A, Ottensmeier CH, Britten CM, et al. Harmonization of the intracellular cytokine staining assay. Cancer Immunol Immunother. 2012;61(7):967–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  74. McNeil LK, Price L, Britten CM, Jaimes M, Maecker H, Odunsi K, Matsuzaki J, Staats JS, et al. A harmonized approach to intracellular cytokine staining gating: results from an international multi-consortia proficiency panel conducted by the Cancer Immunotherapy Consortium (CIC/CRI). Cytom A. 2013;83(8):728–38.

    Google Scholar 

  75. Britten CM, Gouttefangeas C, Welters MJ, Pawelec G, Koch S, Ottensmeier C, et al. The CIMT-monitoring panel: a two-step approach to harmonize the enumeration of antigen-specific CD8+ T lymphocytes by structural and functional assays. Cancer Immunol Immunother. 2008;57(3):289–302.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Attig S, Price L, Janetzki S, Kalos M, Pride M, McNeil L, et al. A critical assessment for the value of markers to gate-out undesired events in HLA-peptide multimer staining protocols. J Transl Med. 2011;9:108.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Brazma A, Hingamp P, Quackenbush J, Sherlock G, Spellman P, Stoeckert C, et al. Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet. 2001;29(4):365–71.

    CAS  PubMed  Google Scholar 

  78. Deutsch EW, Ball CA, Berman JJ, Bova GS, Brazma A, Bumgarner RE, et al. Minimum information specification for in situ hybridization and immunohistochemistry experiments (MISFISHIE). Nat Biotechnol. 2008;26(3):305–12.

    CAS  PubMed  Google Scholar 

  79. Lee JA, Spidlen J, Boyce K, Cai J, Crosbie N, Dalphin M, et al. MIFlowCyt: the minimum information about a flow cytometry experiment. Cytom A. 2008;73(10):926–30.

    Google Scholar 

  80. Brazma A, Robinson A, Cameron G, Ashburner M. One-stop shop for microarray data. Nature. 2000;403(6771):699–700.

    CAS  PubMed  Google Scholar 

  81. Maecker HT, McCoy Jr JP, Amos M, Elliott J, Gaigalas A, Wang L, et al. A model for harmonizing flow cytometry in clinical trials. Nat Immunol. 2010;11(11):975–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  82. Janetzki S, Britten CM, Kalos M, Levitsky HI, Maecker HT, Melief CJ, et al. “MIATA”-minimal information about T cell assays. Immunity. 2009;31(4):527–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Britten CM, Janetzki S, van der Burg SH, Huber C, Kalos M, Levitsky HI, et al. Minimal information about T cell assays: the process of reaching the community of T cell immunologists in cancer and beyond. Cancer Immunol Immunother. 2011;60(1):15–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Britten CM, Janetzki S, Butterfield LH, Ferrari G, Gouttefangeas C, Huber C, et al. T cell assays and MIATA: the essential minimum for maximum impact. Immunity. 2012;37(1):1–2.

    CAS  PubMed  Google Scholar 

  85. Hoos A, Janetzki S, Britten CM. Advancing the field of cancer immunotherapy: MIATA consensus guidelines become available to improve data reporting and interpretation for T-cell immune monitoring. Oncoimmunology. 2012;1(9):1457–9.

    PubMed Central  PubMed  Google Scholar 

  86. World Health Organization. Good Clinical Laboratory Practice (GCLP) 2009. Available from: http://www.who.int/tdr/publications/documents/gclp-web.pdf.

  87. GCP Inspectors Working Group EMA. Reflection paper for laboratories that perform the analysis for evaluation of clinical trial samples 2012. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2012/05/WC500127124.pdf.

  88. Medicines and Healthcare products Regulatory Agency. Good clinical practice. 2009. Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Regulatory_and_procedural_guideline/2012/05/WC500127124.pdf).

  89. Butterfield LH, Palucka AK, Britten CM, Dhodapkar MV, Hakansson L, Janetzki S, et al. Recommendations from the iSBTc-SITC/FDA/NCI workshop on immunotherapy biomarkers. Clin Cancer Res. 2011;17(10):3064–76.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Oldaker TA. Quality control in clinical flow cytometry. Clin Lab Med. 2007;27(3):671–85. viii.

    PubMed  Google Scholar 

  91. Kalina T, Flores-Montero J, van der Velden V, Martin-Ayuso M, Bottcher S, Ritgen M, et al. EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia. 2012;26(9):1986–2010.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Kierstead LS, Dubey S, Meyer B, Tobery TW, Mogg R, Fernandez VR, et al. Enhanced rates and magnitude of immune responses detected against an HIV vaccine: effect of using an optimized process for isolating PBMC. AIDS Res Hum Retrovir. 2007;23(1):86–92.

    CAS  PubMed  Google Scholar 

  93. Smith JG, Joseph HR, Green T, Field JA, Wooters M, Kaufhold RM, et al. Establishing acceptance criteria for cell-mediated-immunity assays using frozen peripheral blood mononuclear cells stored under optimal and suboptimal conditions. Clin Vaccine Immunol. 2007;14(5):527–37.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. McKenna KC, Beatty KM, Vicetti MR, Bilonick RA. Delayed processing of blood increases the frequency of activated CD11b+CD15+ granulocytes which inhibit T cell function. J Immunol Methods. 2009;341(1–2):68–75.

    CAS  PubMed  Google Scholar 

  95. Maecker HT, Rinfret A, D’Souza P, Darden J, Roig E, Landry C, et al. Standardization of cytokine flow cytometry assays. BMC Immunol. 2005;6:13.

    PubMed Central  PubMed  Google Scholar 

  96. Bashashati A, Brinkman RR. A survey of flow cytometry data analysis methods. Adv Bioinformatics. 2009;584603.

    Google Scholar 

  97. Qiu P. Inferring phenotypic properties from single-cell characteristics. PLoS One. 2012;7(5):e37038.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Aghaeepour N, Finak G, Flow CAPC, Consortium D, Hoos H, Mosmann TR, et al. Critical assessment of automated flow cytometry data analysis techniques. Nat Methods. 2013;10(3):228–38.

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Finak G, Jiang W, Pardo J, Asare A, Gottardo R. QUAliFiER: an automated pipeline for quality assessment of gated flow cytometry data. BMC Bioinform. 2012;13:252.

    Google Scholar 

  100. Pyne S, Hu X, Wang K, Rossin E, Lin TI, Maier LM, et al. Automated high-dimensional flow cytometric data analysis. Proc Natl Acad Sci U S A. 2009;106(21):8519–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Chan C, Feng F, Ottinger J, Foster D, West M, Kepler TB. Statistical mixture modeling for cell subtype identification in flow cytometry. Cytom A. 2008;73A(8):693–701.

    Google Scholar 

  102. Lo K, Brinkman RR, Gottardo R. Automated gating of flow cytometry data via robust model-based clustering. Cytom A. 2008;73(4):321–32.

    Google Scholar 

  103. Lin L, Chan C, Hadrup SR, Froesig TM, Wang Q, West M. Hierarchical Bayesian mixture modelling for antigen-specific T-cell subtyping in combinatorially encoded flow cytometry studies. Stat Appl Genet Mol Biol. 2013;12(3):309–31.

    Google Scholar 

  104. Cron A, Gouttefangeas C, Frelinger J, Lin L, Singh SK, Britten CM, Welters MJP, van der Burg SH, West M, Chan C. Hierarchical modeling for rare event detection and cell subset alignment across flow cytometry samples. PLoS Comput Biol. 2013;9(7):e1003130.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Aghaeepour N, Nikolic R, Hoos HH, Brinkman RR. Rapid cell population identification in flow cytometry data. Cytom A. 2011;79(1):6–13.

    Google Scholar 

  106. Ge Y, Sealfon SC. FlowPeaks: a fast unsupervised clustering for flow cytometry data via K-means and density peak finding. Bioinformatics. 2012;28(15):2052–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Qian Y, Wei C, Eun-Hyung Lee F, Campbell J, Halliley J, Lee JA, et al. Elucidation of seventeen human peripheral blood B-cell subsets and quantification of the tetanus response using a density-based method for the automated identification of cell populations in multidimensional flow cytometry data. Cytom B Clin Cytom. 2010;78 Suppl 1:S69–82.

    Google Scholar 

  108. Scheuermann R, Qian Y, Wei C, Sanz I. ImmPort FLOCK: automated cell population identification in high dimensional flow cytometry data. J Immunol. 2009;182:42–17.

    Google Scholar 

  109. Suchard MA, Wang Q, Chan C, Frelinger J, Cron AJ, West M. Understanding GPU programming for statistical computation: studies in massively parallel massive mixtures. J Comput Graph Stat. 2010;19:419–38.

    PubMed Central  PubMed  Google Scholar 

  110. Sarkar D, Le Meur N, Gentleman R. Using flowViz to visualize flow cytometry data. Bioinformatics. 2008;24(6):878–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Qiu P, Simonds EF, Bendall SC, Gibbs Jr KD, Bruggner RV, Linderman MD, et al. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat Biotechnol. 2011;29(10):886–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Amir EA, Davis KL, Tadmor MD, Simonds EF, Levine JH, Bendall SC, et al. ViSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia. Nat Biotechnol. 2013;31(6):545–52.

    CAS  PubMed Central  Google Scholar 

  113. Manolopoulou I, Chan C, West M. Selection sampling from large data sets for targeted inference in mixture modeling. Bayesian Anal. 2010;5(3):1–22.

    PubMed Central  PubMed  Google Scholar 

  114. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science. 1991;254(5038):1643–7.

    PubMed  Google Scholar 

  115. Benlalam H, Labarriere N, Linard B, Derre L, Diez E, Pandolfino MC, et al. Comprehensive analysis of the frequency of recognition of melanoma-associated antigen (MAA) by CD8 melanoma infiltrating lymphocytes (TIL): implications for immunotherapy. Eur J Immunol. 2001;31(7):2007–15.

    CAS  PubMed  Google Scholar 

  116. Lennerz V, Fatho M, Gentilini C, Frye RA, Lifke A, Ferel D, et al. The response of autologous T cells to a human melanoma is dominated by mutated neoantigens. Proc Natl Acad Sci USA. 2005;102(44):16013–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Hadrup SR, Bakker AH, Shu CJ, Andersen RS, van Veluw J, Hombrink P, et al. Parallel detection of antigen-specific T-cell responses by multidimensional encoding of MHC multimers. Nat Methods. 2009;6(7):520–6.

    CAS  PubMed  Google Scholar 

  118. Newell EW, Klein LO, Yu W, Davis MM. Simultaneous detection of many T-cell specificities using combinatorial tetramer staining. Nat Methods. 2009;6(7):497–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Andersen RS, Kvistborg P, Frosig TM, Pedersen NW, Lyngaa R, Bakker AH, et al. Parallel detection of antigen-specific T cell responses by combinatorial encoding of MHC multimers. Nat Protoc. 2012;7(5):891–902.

    CAS  PubMed  Google Scholar 

  120. Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, et al. TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. 2012;1(4):409–18.

    PubMed Central  PubMed  Google Scholar 

  121. Krutzik PO, Nolan GP. Intracellular phospho-protein staining techniques for flow cytometry: monitoring single cell signaling events. Cytom A. 2003;55(2):61–70.

    Google Scholar 

  122. Goldeck D, Low I, Shadan NB, Mustafah S, Pawelec G, Larbi A. Multi-parametric phospho-flow cytometry: a crucial tool for T lymphocyte signaling studies. Cytom A. 2013;83(3):265–72.

    Google Scholar 

  123. Longo DM, Louie B, Putta S, Evensen E, Ptacek J, Cordeiro J, et al. Single-cell network profiling of peripheral blood mononuclear cells from healthy donors reveals age- and race-associated differences in immune signaling pathway activation. J Immunol. 2012;188(4):1717–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  124. Zea AH, Curti BD, Longo DL, Alvord WG, Strobl SL, Mizoguchi H, et al. Alterations in T cell receptor and signal transduction molecules in melanoma patients. Clin Cancer Res. 1995;1(11):1327–35.

    CAS  PubMed  Google Scholar 

  125. Wang SF, Fouquet S, Chapon M, Salmon H, Regnier F, Labroquere K, et al. Early T cell signalling is reversibly altered in PD-1+ T lymphocytes infiltrating human tumors. PLoS One. 2011;6(3):e17621.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Chattopadhyay PK, Perfetto SP, Yu J, Roederer M. The use of quantum dot nanocrystals in multicolor flow cytometry. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(4):334–48.

    CAS  PubMed  Google Scholar 

  127. Chattopadhyay PK, Gaylord B, Palmer A, Jiang N, Raven MA, Lewis G, et al. Brilliant violet fluorophores: a new class of ultrabright fluorescent compounds for immunofluorescence experiments. Cytom A. 2012;81(6):456–66.

    Google Scholar 

  128. Jennings TL, Becker-Catania SG, Triulzi RC, Tao G, Scott B, Sapsford KE, et al. Reactive semiconductor nanocrystals for chemoselective biolabeling and multiplexed analysis. ACS Nano. 2011;5(7):5579–93.

    CAS  PubMed  Google Scholar 

  129. Bendall SC, Simonds EF, Qiu P, Amir E, Krutzik PO, Finck R, et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science. 2011;332(6030):687–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM. Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes. Immunity. 2012;36(1):142–52.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

CG, SW, MJP, SvB, CO, and CB are members of the steering committee of the CIMT Immunoguiding Program (CIP). The CIP and CC are supported by a grant of the Wallace Coulter Foundation (Miami, Florida). CG is supported by a grant of the Deutsche Forschungsgemeinschaft SFB685. CC is supported by grants to the Duke University Center for AIDS Research and EQAPOL program funded by NIH grant 5P30 AI064518 and NIH contract HHSN272201000045C, respectively. We thank S Heidu for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cliburn Chan MBBS, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gouttefangeas, C. et al. (2015). Flow Cytometry in Cancer Immunotherapy: Applications, Quality Assurance, and Future. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44006-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44006-3_25

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44005-6

  • Online ISBN: 978-3-662-44006-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics