Skip to main content

Primary Immunodeficiencies and Cancers

  • Chapter
  • First Online:
Cancer Immunology

Abstract

Primary immunodeficiencies (PIDs) comprise a heterogeneous group of genetic disorders, predisposing to frequent and severe infections, autoimmunity, and cancer. In recent years, the tendency to develop cancers has increased in parallel with improved life expectancy, largely due to effective immunoglobulin replacement and other supportive therapies. The overall risk for developing malignancies in children with PIDs is 4–25 %, with lymphomas representing up to 60 % of cancers. Defective immunosurveillance mechanisms and infection with oncogenic viruses have significant contributory roles in many cases. In this chapter, we review our understanding of the spectrum and pathogenesis of malignancies in the context of immunodeficiency syndromes, with emphasis on the epidemiologic data, clinical patterns, and potential importance of cancer screening for patients with specific PIDs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Herz W, Bousfiha A, Casanova JL, Chapel H, Conley ME, Cunningham-Rundles C, et al. Primary immunodeficiency diseases: an update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front Immunol. 2011;2:54.

    PubMed Central  PubMed  Google Scholar 

  2. Salavoura K, Kolialexi A, Tsangaris G, Mavrou A. Development of cancer in patients with primary immunodeficiencies. Anticancer Res. 2008;28(2B):1263–9.

    PubMed  Google Scholar 

  3. Mueller BU, Pizzo PA. Cancer in children with primary or secondary immunodeficiencies. J Pediatr. 1995;126(1):1–10.

    CAS  PubMed  Google Scholar 

  4. Filipovich AH, Mathur A, Kamat D, Shapiro RS. Primary immunodeficiencies: genetic risk factors for lymphoma. Cancer Res. 1992;52(19 Suppl):5465s–7.

    CAS  PubMed  Google Scholar 

  5. Dunn GP, Old LJ, Schreiber RD. The immunobiology of cancer immunosurveillance and immunoediting. Immunity. 2004;21(2):137–48.

    CAS  PubMed  Google Scholar 

  6. Martin D, Gutkind JS. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene. 2008;27 Suppl 2:S31–42.

    CAS  PubMed  Google Scholar 

  7. Philip M, Rowley DA, Schreiber H. Inflammation as a tumor promoter in cancer induction. Semin Cancer Biol. 2004;14(6):433–9.

    CAS  PubMed  Google Scholar 

  8. Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434(7035):864–70.

    CAS  PubMed  Google Scholar 

  9. Tran H, Nourse J, Hall S, Green M, Griffiths L, Gandhi MK. Immunodeficiency-associated lymphomas. Blood Rev. 2008;22(5):261–81.

    PubMed  Google Scholar 

  10. Chakraborty R, Sankaranarayanan K. Cancer predisposition, radiosensitivity and the risk of radiation-induced cancers II. A Mendelian single-locus model of cancer predisposition and radiosensitivity for predicting cancer risks in populations. Radiat Res. 1995;143(3):293–301.

    CAS  PubMed  Google Scholar 

  11. Kamani NR, Kumar S, Hassebroek A, Eapen M, LeRademacher J, Casper J, et al. Malignancies after hematopoietic cell transplantation for primary immune deficiencies: a report from the Center for International Blood and Marrow Transplant Research. Biol Blood Marrow Transplant. 2011;17(12):1783–9.

    PubMed Central  PubMed  Google Scholar 

  12. Hammarström L, Vorechovsky I, Webster D. Selective IgA deficiency (SIgAD) and common variable immunodeficiency (CVID). Clin Exp Immunol. 2000;120(2):225–31.

    PubMed Central  PubMed  Google Scholar 

  13. Chua I, Quinti I, Grimbacher B. Lymphoma in common variable immunodeficiency: interplay between immune dysregulation, infection and genetics. Curr Opin Hematol. 2008;15(4):368–74.

    PubMed  Google Scholar 

  14. Cunningham-Rundles C. How I treat common variable immune deficiency. Blood. 2010;116(1):7–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol. 1999;92(1):34–48.

    CAS  PubMed  Google Scholar 

  16. Kinlen LJ, Webster AD, Bird AG, Haile R, Peto J, Soothill JF, et al. Prospective study of cancer in patients with hypogammaglobulinaemia. Lancet. 1985;1(8423):263–6.

    CAS  PubMed  Google Scholar 

  17. Cunningham-Rundles C, Siegal FP, Cunningham-Rundles S, Lieberman P. Incidence of cancer in 98 patients with common varied immunodeficiency. J Clin Immunol. 1987;7(4):294–9.

    CAS  PubMed  Google Scholar 

  18. Hermaszewski RA, Webster AD. Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med. 1993;86(1):31–42.

    CAS  PubMed  Google Scholar 

  19. Zullo A, Romiti A, Rinaldi V, Vecchione A, Tomao S, Aiuti F, et al. Gastric pathology in patients with common variable immunodeficiency. Gut. 1999;45(1):77–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Grimbacher B, Hutloff A, Schlesier M, Glocker E, Warnatz K, Dräger R, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol. 2003;4(3):261–8.

    CAS  PubMed  Google Scholar 

  21. Salzer U, Chapel HM, Webster AD, Pan-Hammarström Q, Schmitt-Graeff A, Schlesier M, et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat Genet. 2005;37(8):820–8.

    CAS  PubMed  Google Scholar 

  22. Castigli E, Wilson SA, Garibyan L, Rachid R, Bonilla F, Schneider L, et al. TACI is mutant in common variable immunodeficiency and IgA deficiency. Nat Genet. 2005;37(8):829–34.

    CAS  PubMed  Google Scholar 

  23. Warnatz K, Salzer U, Rizzi M, Fischer B, Gutenberger S, Böhm J, et al. B-cell activating factor receptor deficiency is associated with an adult-onset antibody deficiency syndrome in humans. Proc Natl Acad Sci U S A. 2009;106(33):13945–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. van Zelm MC, Reisli I, van der Burg M, Castaño D, van Noesel CJ, van Tol MJ, et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N Engl J Med. 2006;354(18):1901–12.

    PubMed  Google Scholar 

  25. Kuijpers TW, Bende RJ, Baars PA, Grummels A, Derks IA, Dolman KM, et al. CD20 deficiency in humans results in impaired T cell-independent antibody responses. J Clin Invest. 2010;120(1):214–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. van Zelm MC, Smet J, Adams B, Mascart F, Schandené L, Janssen F, et al. CD81 gene defect in humans disrupts CD19 complex formation and leads to antibody deficiency. J Clin Invest. 2010;120(4):1265–74.

    PubMed Central  PubMed  Google Scholar 

  27. Thiel J, Kimmig L, Salzer U, Grudzien M, Lebrecht D, Hagena T, et al. Genetic CD21 deficiency is associated with hypogammaglobulinemia. J Allergy Clin Immunol. 2012;129(3):801–10.e6.

    CAS  PubMed  Google Scholar 

  28. Lopez-Herrera G, Tampella G, Pan-Hammarström Q, Herholz P, Trujillo-Vargas CM, Phadwal K, et al. Deleterious mutations in LRBA are associated with a syndrome of immune deficiency and autoimmunity. Am J Hum Genet. 2012;90(6):986–1001.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Cunningham-Rundles C. Clinical and immunologic analyses of 103 patients with common variable immunodeficiency. J Clin Immunol. 1989;9(1):22–33.

    CAS  PubMed  Google Scholar 

  30. Boncristiano M, Majolini MB, D’Elios MM, Pacini S, Valensin S, Ulivieri C, et al. Defective recruitment and activation of ZAP-70 in common variable immunodeficiency patients with T cell defects. Eur J Immunol. 2000;30(9):2632–8.

    Google Scholar 

  31. Gulbranson-Judge A, Tybulewicz VL, Walters AE, Toellner KM, MacLennan IC, Turner M. Defective immunoglobulin class switching in Vav-deficient mice is attributable to compromised T cell help. Eur J Immunol. 1999;29(2):477–87.

    CAS  PubMed  Google Scholar 

  32. Baumert E, Wolff-Vorbeck G, Schlesier M, Peter HH. Immunophenotypical alterations in a subset of patients with common variable immunodeficiency (CVID). Clin Exp Immunol. 1992;90(1):25–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Holm AM, Sivertsen EA, Tunheim SH, Haug T, Bjerkeli V, Yndestad A, et al. Gene expression analysis of peripheral T cells in a subgroup of common variable immunodeficiency shows predominance of CCR7(-) effector-memory T cells. Clin Exp Immunol. 2004;138(2):278–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. North ME, Webster AD, Farrant J. Primary defect in CD8+ lymphocytes in the antibody deficiency disease (common variable immunodeficiency): abnormalities in intracellular production of interferon-gamma (IFN-gamma) in CD28+ (‘cytotoxic’) and CD28- (‘suppressor’) CD8+ subsets. Clin Exp Immunol. 1998;111(1):70–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. McQuaid A, Tormey VJ, Trafford B, Webster AD, Bofill M. Evidence for increased expression of regulatory cytokine receptors interleukin-12R and interleukin-18R in common variable immunodeficiency. Clin Exp Immunol. 2003;134(2):321–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Bayry J, Hermine O, Webster DA, Lévy Y, Kaveri SV. Common variable immunodeficiency: the immune system in chaos. Trends Mol Med. 2005;11(8):370–6.

    CAS  PubMed  Google Scholar 

  37. Farrington M, Grosmaire LS, Nonoyama S, Fischer SH, Hollenbaugh D, Ledbetter JA, et al. CD40 ligand expression is defective in a subset of patients with common variable immunodeficiency. Proc Natl Acad Sci U S A. 1994;91(3):1099–103.

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Aspalter RM, Sewell WA, Dolman K, Farrant J, Webster AD. Deficiency in circulating natural killer (NK) cell subsets in common variable immunodeficiency and X-linked agammaglobulinaemia. Clin Exp Immunol. 2000;121(3):506–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Fulcher DA, Avery DT, Fewings NL, Berglund LJ, Wong S, Riminton DS, et al. Invariant natural killer (iNK) T cell deficiency in patients with common variable immunodeficiency. Clin Exp Immunol. 2009;157(3):365–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Trujillo CM, Muskus C, Arango J, Patiño PJ, Montoya CJ. Quantitative and functional evaluation of innate immune responses in patients with common variable immunodeficiency. J Investig Allergol Clin Immunol. 2011;21(3):207–15.

    CAS  PubMed  Google Scholar 

  41. Desar IM, Keuter M, Raemaekers JM, Jansen JB, van Krieken JH, van der Meer JW. Extranodal marginal zone (MALT) lymphoma in common variable immunodeficiency. Neth J Med. 2006;64(5):136–40.

    CAS  PubMed  Google Scholar 

  42. Hussell T, Isaacson PG, Crabtree JE, Spencer J. The response of cells from low-grade B-cell gastric lymphomas of mucosa-associated lymphoid tissue to Helicobacter pylori. Lancet. 1993;342(8871):571–4.

    CAS  PubMed  Google Scholar 

  43. Wheat WH, Cool CD, Morimoto Y, Rai PR, Kirkpatrick CH, Lindenbaum BA, et al. Possible role of human herpesvirus 8 in the lymphoproliferative disorders in common variable immunodeficiency. J Exp Med. 2005;202(4):479–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Raeiszadeh M, Kopycinski J, Paston SJ, Diss T, Lowdell M, Hardy GA, et al. The T cell response to persistent herpes virus infections in common variable immunodeficiency. Clin Exp Immunol. 2006;146(2):234–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  45. He B, Chadburn A, Jou E, Schattner EJ, Knowles DM, Cerutti A. Lymphoma B cells evade apoptosis through the TNF family members BAFF/BLyS and APRIL. J Immunol. 2004;172(5):3268–79.

    CAS  PubMed  Google Scholar 

  46. Kern C, Cornuel JF, Billard C, Tang R, Rouillard D, Stenou V, et al. Involvement of BAFF and APRIL in the resistance to apoptosis of B-CLL through an autocrine pathway. Blood. 2004;103(2):679–88.

    CAS  PubMed  Google Scholar 

  47. Palanduz S, Palanduz A, Yalcin I, Somer A, Ones U, Ustek D, et al. In vitro chromosomal radiosensitivity in common variable immune deficiency. Clin Immunol Immunopathol. 1998;86(2):180–2.

    CAS  PubMed  Google Scholar 

  48. Vorechovský I, Scott D, Haeney MR, Webster DA. Chromosomal radiosensitivity in common variable immune deficiency. Mutat Res. 1993;290(2):255–64.

    PubMed  Google Scholar 

  49. Lederman HM, Winkelstein JA. X-linked agammaglobulinemia: an analysis of 96 patients. Medicine (Baltimore). 1985;64(3):145–56.

    CAS  Google Scholar 

  50. Ochs HD, Smith CI. X-linked agammaglobulinemia. A clinical and molecular analysis. Medicine (Baltimore). 1996;75(6):287–99.

    CAS  Google Scholar 

  51. McKinney RE, Katz SL, Wilfert CM. Chronic enteroviral meningoencephalitis in agammaglobulinemic patients. Rev Infect Dis. 1987;9(2):334–56.

    PubMed  Google Scholar 

  52. Vihinen M, Mattsson PT, Smith CI. Bruton tyrosine kinase (BTK) in X-linked agammaglobulinemia (XLA). Front Biosci. 2000;5:D917–28.

    CAS  PubMed  Google Scholar 

  53. Aoki Y, Isselbacher KJ, Pillai S. Bruton tyrosine kinase is tyrosine phosphorylated and activated in pre-B lymphocytes and receptor-ligated B cells. Proc Natl Acad Sci U S A. 1994;91(22):10606–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Afar DE, Park H, Howell BW, Rawlings DJ, Cooper J, Witte ON. Regulation of Btk by Src family tyrosine kinases. Mol Cell Biol. 1996;16(7):3465–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Takata M, Kurosaki T. A role for Bruton’s tyrosine kinase in B cell antigen receptor-mediated activation of phospholipase C-gamma 2. J Exp Med. 1996;184(1):31–40.

    CAS  PubMed  Google Scholar 

  56. Scharenberg AM, El-Hillal O, Fruman DA, Beitz LO, Li Z, Lin S, et al. Phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3)/Tec kinase-dependent calcium signaling pathway: a target for SHIP-mediated inhibitory signals. EMBO J. 1998;17(7):1961–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Uckun FM, Waddick KG, Mahajan S, Jun X, Takata M, Bolen J, et al. BTK as a mediator of radiation-induced apoptosis in DT-40 lymphoma B cells. Science. 1996;273(5278):1096–100.

    CAS  PubMed  Google Scholar 

  58. Uckun F, Ozer Z, Vassilev A. Bruton’s tyrosine kinase prevents activation of the anti-apoptotic transcription factor STAT3 and promotes apoptosis in neoplastic B-cells and B-cell precursors exposed to oxidative stress. Br J Haematol. 2007;136(4):574–89.

    CAS  PubMed  Google Scholar 

  59. Doyle SL, Jefferies CA, Feighery C, O’Neill LA. Signaling by Toll-like receptors 8 and 9 requires Bruton’s tyrosine kinase. J Biol Chem. 2007;282(51):36953–60.

    CAS  PubMed  Google Scholar 

  60. Sochorová K, Horváth R, Rozková D, Litzman J, Bartunková J, Sedivá A, et al. Impaired Toll-like receptor 8-mediated IL-6 and TNF-alpha production in antigen-presenting cells from patients with X-linked agammaglobulinemia. Blood. 2007;109(6):2553–6.

    PubMed  Google Scholar 

  61. Brosens LA, Tytgat KM, Morsink FH, Sinke RJ, Ten Berge IJ, Giardiello FM, et al. Multiple colorectal neoplasms in X-linked agammaglobulinemia. Clin Gastroenterol Hepatol. 2008;6(1):115–9.

    PubMed  Google Scholar 

  62. van der Meer JW, Weening RS, Schellekens PT, van Munster IP, Nagengast FM. Colorectal cancer in patients with X-linked agammaglobulinaemia. Lancet. 1993;341(8858):1439–40.

    PubMed  Google Scholar 

  63. James RG, Biechele TL, Conrad WH, Camp ND, Fass DM, Major MB, et al. Bruton’s tyrosine kinase revealed as a negative regulator of Wnt-beta-catenin signaling. Sci Signal. 2009;2(72):ra25.

    PubMed  Google Scholar 

  64. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843–50.

    CAS  PubMed  Google Scholar 

  65. Lavilla P, Gil A, Rodríguez MC, Dupla ML, Pintado V, Fontán G. X-linked agammaglobulinemia and gastric adenocarcinoma. Cancer. 1993;72(5):1528–31.

    CAS  PubMed  Google Scholar 

  66. Echave-Sustaeta JM, Villena V, Verdugo M, López-Encuentra A, de Agustín P, Alberti N. X-linked agammaglobulinaemia and squamous lung cancer. Eur Respir J. 2001;17(3):570–2.

    CAS  PubMed  Google Scholar 

  67. Al-Attas RA, Rahi AH. Primary antibody deficiency in Arabs: first report from eastern Saudi Arabia. J Clin Immunol. 1998;18(5):368–71.

    CAS  PubMed  Google Scholar 

  68. Kanoh T, Mizumoto T, Yasuda N, Koya M, Ohno Y, Uchino H, et al. Selective IgA deficiency in Japanese blood donors: frequency and statistical analysis. Vox Sang. 1986;50(2):81–6.

    CAS  PubMed  Google Scholar 

  69. Conley ME, Notarangelo LD, Etzioni A. Diagnostic criteria for primary immunodeficiencies. Representing PAGID (Pan-American Group for Immunodeficiency) and ESID (European Society for Immunodeficiencies). Clin Immunol. 1999;93(3):190–7.

    CAS  PubMed  Google Scholar 

  70. Yel L. Selective IgA deficiency. J Clin Immunol. 2010;30(1):10–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Jacob CM, Pastorino AC, Fahl K, Carneiro-Sampaio M, Monteiro RC. Autoimmunity in IgA deficiency: revisiting the role of IgA as a silent housekeeper. J Clin Immunol. 2008;28 Suppl 1:S56–61.

    CAS  PubMed  Google Scholar 

  72. Ballow M. Primary immunodeficiency disorders: antibody deficiency. J Allergy Clin Immunol. 2002;109(4):581–91.

    CAS  PubMed  Google Scholar 

  73. Cunningham-Rundles C. Physiology of IgA and IgA deficiency. J Clin Immunol. 2001;21(5):303–9.

    CAS  PubMed  Google Scholar 

  74. Chow MA, Lebwohl B, Reilly NR, Green PH. Immunoglobulin A deficiency in celiac disease. J Clin Gastroenterol. 2012;46(10):850–4.

    CAS  PubMed  Google Scholar 

  75. Dalgic B, Sari S, Basturk B, Ensari A, Egritas O, Bukulmez A, et al. Prevalence of celiac disease in healthy Turkish school children. Am J Gastroenterol. 2011;106(8):1512–7.

    CAS  PubMed  Google Scholar 

  76. Haimila K, Einarsdottir E, de Kauwe A, Koskinen LL, Pan-Hammarström Q, Kaartinen T, et al. The shared CTLA4-ICOS risk locus in celiac disease, IgA deficiency and common variable immunodeficiency. Genes Immun. 2009;10(2):151–61.

    CAS  PubMed  Google Scholar 

  77. Wang N, Hammarström L. IgA deficiency: what is new? Curr Opin Allergy Clin Immunol. 2012;12(6):602–8.

    CAS  PubMed  Google Scholar 

  78. Zenone T, Souquet PJ, Cunningham-Rundles C, Bernard JP. Hodgkin’s disease associated with IgA and IgG subclass deficiency. J Intern Med. 1996;240(2):99–102.

    CAS  PubMed  Google Scholar 

  79. Cunningham-Rundles C, Pudifin DJ, Armstrong D, Good RA. Selective IgA deficiency and neoplasia. Vox Sang. 1980;38(2):61–7.

    CAS  PubMed  Google Scholar 

  80. Strober W, Sneller MC. IgA deficiency. Ann Allergy. 1991;66(5):363–75.

    CAS  PubMed  Google Scholar 

  81. Buckley RH. Clinical and immunologic features of selective IgA deficiency. Birth Defects Orig Artic Ser. 1975;11(1):134–42.

    CAS  PubMed  Google Scholar 

  82. De Laat PC, Weemaes CM, Gonera R, Van Munster PJ, Bakkeren JA, Stoelinga GB. Clinical manifestations in selective IgA deficiency in childhood. A follow-up report. Acta Paediatr Scand. 1991;80(8–9):798–804.

    PubMed  Google Scholar 

  83. Lee CH, Quin JW, Wong CS, Grace CS, Rozenberg MC. IgA deficiency, superior mediastinal tumour with unusual clinical manifestations. Aust N Z J Med. 1979;9(3):306–9.

    CAS  PubMed  Google Scholar 

  84. Hamoudi AB, Ertel I, Newton WA, Reiner CB, Clatworthy HW. Multiple neoplasms in an adolescent child associated with IGA deficiency. Cancer. 1974;33(4):1134–44.

    CAS  PubMed  Google Scholar 

  85. Shkalim V, Monselize Y, Segal N, Zan-Bar I, Hoffer V, Garty BZ. Selective IgA deficiency in children in Israel. J Clin Immunol. 2010;30(5):761–5.

    CAS  PubMed  Google Scholar 

  86. Huck K, Feyen O, Niehues T, Rüschendorf F, Hübner N, Laws HJ, et al. Girls homozygous for an IL-2-inducible T cell kinase mutation that leads to protein deficiency develop fatal EBV-associated lymphoproliferation. J Clin Invest. 2009;119(5):1350–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Stepensky P, Weintraub M, Yanir A, Revel-Vilk S, Krux F, Huck K, et al. IL-2-inducible T-cell kinase deficiency: clinical presentation and therapeutic approach. Haematologica. 2011;96(3):472–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. AB. New forms of EBV-associated lymphoproliferation and their treatment by allo SCT. In: 3rd Meeting on clinical immunology, allergy and immunodeficiencies. Tehran: 2010.

    Google Scholar 

  89. Linka RM, Huck K, Krux F, Stepenski P, Synaeve C, Vettenranta K, et al. Germline mutations within the IL2-inducible T cell kinase impede T cell differentiation or survival, cause protein destabilisation, loss of membrane recruitment and lead to severe EBV lymphoproliferation. In: 53rd ASH Annual Meeting and Exposition. Orlando: 2010.

    Google Scholar 

  90. Mansouri D, Mahdaviani SA, Khalilzadeh S, Mohajerani SA, Hasanzad M, Sadr S, et al. IL-2-inducible T-cell kinase deficiency with pulmonary manifestations due to disseminated Epstein-Barr virus infection. Int Arch Allergy Immunol. 2012;158(4):418–22.

    CAS  PubMed  Google Scholar 

  91. Berg LJ, Finkelstein LD, Lucas JA, Schwartzberg PL. Tec family kinases in T lymphocyte development and function. Annu Rev Immunol. 2005;23:549–600.

    CAS  PubMed  Google Scholar 

  92. Felices M, Falk M, Kosaka Y, Berg LJ. Tec kinases in T cell and mast cell signaling. Adv Immunol. 2007;93:145–84.

    CAS  PubMed  Google Scholar 

  93. Felices M, Berg LJ. The Tec kinases Itk and Rlk regulate NKT cell maturation, cytokine production, and survival. J Immunol. 2008;180(5):3007–18.

    CAS  PubMed  Google Scholar 

  94. Schaeffer EM, Broussard C, Debnath J, Anderson S, McVicar DW, Schwartzberg PL. Tec family kinases modulate thresholds for thymocyte development and selection. J Exp Med. 2000;192(7):987–1000.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Prince AL, Yin CC, Enos ME, Felices M, Berg LJ. The Tec kinases Itk and Rlk regulate conventional versus innate T-cell development. Immunol Rev. 2009;228(1):115–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Bachmann MF, Littman DR, Liao XC. Antiviral immune responses in Itk-deficient mice. J Virol. 1997;71(10):7253–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Atherly LO, Brehm MA, Welsh RM, Berg LJ. Tec kinases Itk and Rlk are required for CD8+ T cell responses to virus infection independent of their role in CD4+ T cell help. J Immunol. 2006;176(3):1571–81.

    CAS  PubMed  Google Scholar 

  98. Khurana D, Arneson LN, Schoon RA, Dick CJ, Leibson PJ. Differential regulation of human NK cell-mediated cytotoxicity by the tyrosine kinase Itk. J Immunol. 2007;178(6):3575–82.

    CAS  PubMed  Google Scholar 

  99. Rezaei N, Hedayat M, Aghamohammadi A, Nichols KE. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J Allergy Clin Immunol. 2011;127(6):1329–41.e2. quiz 42–3.

    PubMed  Google Scholar 

  100. Markert ML. Purine nucleoside phosphorylase deficiency. Immunodefic Rev. 1991;3(1):45–81.

    CAS  PubMed  Google Scholar 

  101. Cohen A, Cohen A, Grunebaum E, Arpaia E, Roifman CM. Immunodeficiency caused by purine nucleoside phosphorylase deficiency. Immunol Allergy Clin North Am. 2000;20(1):143–59.

    Google Scholar 

  102. Pannicke U, Tuchschmid P, Friedrich W, Bartram CR, Schwarz K. Two novel missense and frameshift mutations in exons 5 and 6 of the purine nucleoside phosphorylase (PNP) gene in a severe combined immunodeficiency (SCID) patient. Hum Genet. 1996;98(6):706–9.

    CAS  PubMed  Google Scholar 

  103. Banzhoff A, Schauer U, Riedel F, Gahr M, Rieger CH. Fatal varicella in a 5-year-old boy. Eur J Pediatr. 1997;156(4):333–4.

    CAS  PubMed  Google Scholar 

  104. Gelfand EW, Dosch HM, Biggar WD, Fox IH. Partial purine nucleoside phosphorylase deficiency. Studies of lymphocyte function. J Clin Invest. 1978;61(4):1071–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  105. Andrews LG, Markert ML. Exon skipping in purine nucleoside phosphorylase mRNA processing leading to severe immunodeficiency. J Biol Chem. 1992;267(11):7834–8.

    CAS  PubMed  Google Scholar 

  106. Aust MR, Andrews LG, Barrett MJ, Norby-Slycord CJ, Markert ML. Molecular analysis of mutations in a patient with purine nucleoside phosphorylase deficiency. Am J Hum Genet. 1992;51(4):763–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Tam DA, Leshner RT. Stroke in purine nucleoside phosphorylase deficiency. Pediatr Neurol. 1995;12(2):146–8.

    PubMed  Google Scholar 

  108. Carpenter PA, Ziegler JB, Vowels MR. Late diagnosis and correction of purine nucleoside phosphorylase deficiency with allogeneic bone marrow transplantation. Bone Marrow Transplant. 1996;17(1):121–4.

    CAS  PubMed  Google Scholar 

  109. Stoop JW, Zegers BJ, Hendrickx GF, van Heukelom LH, Staal GE, de Bree PK, et al. Purine nucleoside phosphorylase deficiency associated with selective cellular immunodeficiency. N Engl J Med. 1977;296(12):651–5.

    CAS  PubMed  Google Scholar 

  110. Soutar RL, Day RE. Dysequilibrium/ataxic diplegia with immunodeficiency. Arch Dis Child. 1991;66(8):982–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Markert ML, Finkel BD, McLaughlin TM, Watson TJ, Collard HR, McMahon CP, et al. Mutations in purine nucleoside phosphorylase deficiency. Hum Mutat. 1997;9(2):118–21.

    CAS  PubMed  Google Scholar 

  112. Ochs UH, Chen SH, Ochs HD, Osborne WR, Scott CR. Purine nucleoside phosphorylase deficiency: a molecular model for selective loss of T cell function. J Immunol. 1979;122(6):2424–9.

    CAS  PubMed  Google Scholar 

  113. Gudas LJ, Ullman B, Cohen A, Martin DW. Deoxyguanosine toxicity in a mouse T lymphoma: relationship to purine nucleoside phosphorylase-associated immune dysfunction. Cell. 1978;14(3):531–8.

    CAS  PubMed  Google Scholar 

  114. Ullman B, Gudas LJ, Clift SM, Martin DW. Isolation and characterization of purine-nucleoside phosphorylase-deficient T-lymphoma cells and secondary mutants with altered ribonucleotide reductase: genetic model for immunodeficiency disease. Proc Natl Acad Sci U S A. 1979;76(3):1074–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Snyder FF, Jenuth JP, Dilay JE, Fung E, Lightfoot T, Mably ER. Secondary loss of deoxyguanosine kinase activity in purine nucleoside phosphorylase deficient mice. Biochim Biophys Acta. 1994;1227(1–2):33–40.

    CAS  PubMed  Google Scholar 

  116. Jenuth JP, Dilay JE, Fung E, Mably ER, Snyder FF. Absence of dGTP accumulation and compensatory loss of deoxyguanosine kinase in purine nucleoside phosphorylase deficient mice. Adv Exp Med Biol. 1991;309B:273–6.

    CAS  PubMed  Google Scholar 

  117. Park I, Ives DH. Properties of a highly purified mitochondrial deoxyguanosine kinase. Arch Biochem Biophys. 1988;266(1):51–60.

    CAS  PubMed  Google Scholar 

  118. Giblett ER, Ammann AJ, Wara DW, Sandman R, Diamond LK. Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity. Lancet. 1975;1(7914):1010–3.

    CAS  PubMed  Google Scholar 

  119. Carson DA, Kaye J, Seegmiller JE. Lymphospecific toxicity in adenosine deaminase deficiency and purine nucleoside phosphorylase deficiency: possible role of nucleoside kinase(s). Proc Natl Acad Sci U S A. 1977;74(12):5677–81.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Kazmers IS, Mitchell BS, Dadonna PE, Wotring LL, Townsend LB, Kelley WN. Inhibition of purine nucleoside phosphorylase by 8-aminoguanosine: selective toxicity for T lymphoblasts. Science. 1981;214(4525):1137–9.

    CAS  PubMed  Google Scholar 

  121. Veis DJ, Sentman CL, Bach EA, Korsmeyer SJ. Expression of the Bcl-2 protein in murine and human thymocytes and in peripheral T lymphocytes. J Immunol. 1993;151(5):2546–54.

    CAS  PubMed  Google Scholar 

  122. Cohen A, Lee JW, Dosch HM, Gelfand EW. The expression of deoxyguanosine toxicity in T lymphocytes at different stages of maturation. J Immunol. 1980;125(4):1578–82.

    CAS  PubMed  Google Scholar 

  123. Renner ED, Puck JM, Holland SM, Schmitt M, Weiss M, Frosch M, et al. Autosomal recessive hyperimmunoglobulin E syndrome: a distinct disease entity. J Pediatr. 2004;144(1):93–9.

    CAS  PubMed  Google Scholar 

  124. Zhang Q, Davis JC, Lamborn IT, Freeman AF, Jing H, Favreau AJ, et al. Combined immunodeficiency associated with DOCK8 mutations. N Engl J Med. 2009;361(21):2046–55.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Engelhardt KR, McGhee S, Winkler S, Sassi A, Woellner C, Lopez-Herrera G, et al. Large deletions and point mutations involving the dedicator of cytokinesis 8 (DOCK8) in the autosomal-recessive form of hyper-IgE syndrome. J Allergy Clin Immunol. 2009;124(6):1289–302.e4.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Al-Herz W, Ragupathy R, Massaad MJ, Al-Attiyah R, Nanda A, Engelhardt KR, et al. Clinical, immunologic and genetic profiles of DOCK8-deficient patients in Kuwait. Clin Immunol. 2012;143(3):266–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Alsum Z, Hawwari A, Alsmadi O, Al-Hissi S, Borrero E, Abu-Staiteh A, et al. Clinical, immunological and molecular characterization of DOCK8 and DOCK8-like deficient patients: single center experience of twenty-five patients. J Clin Immunol. 2013;33(1):55–67.

    CAS  PubMed  Google Scholar 

  128. Lei JY, Wang Y, Jaffe ES, Turner ML, Raffeld M, Sorbara L, et al. Microcystic adnexal carcinoma associated with primary immunodeficiency, recurrent diffuse herpes simplex virus infection, and cutaneous T-cell lymphoma. Am J Dermatopathol. 2000;22(6):524–9.

    CAS  PubMed  Google Scholar 

  129. Meller N, Merlot S, Guda C. CZH proteins: a new family of Rho-GEFs. J Cell Sci. 2005;118(Pt 21):4937–46.

    CAS  PubMed  Google Scholar 

  130. Ruusala A, Aspenström P. Isolation and characterisation of DOCK8, a member of the DOCK180-related regulators of cell morphology. FEBS Lett. 2004;572(1–3):159–66.

    CAS  PubMed  Google Scholar 

  131. Harada Y, Tanaka Y, Terasawa M, Pieczyk M, Habiro K, Katakai T, et al. DOCK8 is a Cdc42 activator critical for interstitial dendritic cell migration during immune responses. Blood. 2012;119(19):4451–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Ham H, Guerrier S, Kim J, Schoon RA, Anderson EL, Hamann MJ, et al. Dedicator of cytokinesis 8 interacts with talin and Wiskott-Aldrich syndrome protein to regulate NK cell cytotoxicity. J Immunol. 2013;190(7):3661–9.

    CAS  PubMed  Google Scholar 

  133. Jabara HH, McDonald DR, Janssen E, Massaad MJ, Ramesh N, Borzutzky A, et al. DOCK8 functions as an adaptor that links TLR-MyD88 signaling to B cell activation. Nat Immunol. 2012;13(6):612–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Lambe T, Crawford G, Johnson AL, Crockford TL, Bouriez-Jones T, Smyth AM, et al. DOCK8 is essential for T-cell survival and the maintenance of CD8+ T-cell memory. Eur J Immunol. 2011;41(12):3423–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Randall KL, Lambe T, Johnson AL, Johnson A, Treanor B, Kucharska E, et al. Dock8 mutations cripple B cell immunological synapses, germinal centers and long-lived antibody production. Nat Immunol. 2009;10(12):1283–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Mizesko MC, Banerjee PP, Monaco-Shawver L, Mace EM, Bernal WE, Sawalle-Belohradsky J, et al. Defective actin accumulation impairs human natural killer cell function in patients with dedicator of cytokinesis 8 deficiency. J Allergy Clin Immunol. 2013;131(3):840–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Takahashi K, Kohno T, Ajima R, Sasaki H, Minna JD, Fujiwara T, et al. Homozygous deletion and reduced expression of the DOCK8 gene in human lung cancer. Int J Oncol. 2006;28(2):321–8.

    CAS  PubMed  Google Scholar 

  138. Saelee P, Wongkham S, Puapairoj A, Khuntikeo N, Petmitr S, Chariyalertsak S, et al. Novel PNLIPRP3 and DOCK8 gene expression and prognostic implications of DNA loss on chromosome 10q25.3 in hepatocellular carcinoma. Asian Pac J Cancer Prev. 2009;10(3):501–6.

    PubMed  Google Scholar 

  139. Idbaih A, Carvalho Silva R, Crinière E, Marie Y, Carpentier C, Boisselier B, et al. Genomic changes in progression of low-grade gliomas. J Neurooncol. 2008;90(2):133–40.

    CAS  PubMed  Google Scholar 

  140. Su HC. Dedicator of cytokinesis 8 (DOCK8) deficiency. Curr Opin Allergy Clin Immunol. 2010;10(6):515–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  141. Marsh RA, Madden L, Kitchen BJ, Mody R, McClimon B, Jordan MB, et al. XIAP deficiency: a unique primary immunodeficiency best classified as X-linked familial hemophagocytic lymphohistiocytosis and not as X-linked lymphoproliferative disease. Blood. 2010;116(7):1079–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Minna JD, Roth JA, Gazdar AF. Focus on lung cancer. Cancer Cell. 2002;1(1):49–52.

    CAS  PubMed  Google Scholar 

  143. Yokota J, Kohno T. Molecular footprints of human lung cancer progression. Cancer Sci. 2004;95(3):197–204.

    CAS  PubMed  Google Scholar 

  144. Nishioka M, Kohno T, Tani M, Yanaihara N, Tomizawa Y, Otsuka A, et al. MYO18B, a candidate tumor suppressor gene at chromosome 22q12.1, deleted, mutated, and methylated in human lung cancer. Proc Natl Acad Sci U S A. 2002;99(19):12269–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Hamada K, Kohno T, Kawanishi M, Ohwada S, Yokota J. Association of CDKN2A(p16)/CDKN2B(p15) alterations and homozygous chromosome arm 9p deletions in human lung carcinoma. Genes Chromosomes Cancer. 1998;22(3):232–40.

    CAS  PubMed  Google Scholar 

  146. Crequer A, Troeger A, Patin E, Ma CS, Picard C, Pedergnana V, et al. Human RHOH deficiency causes T cell defects and susceptibility to EV-HPV infections. J Clin Invest. 2012;122(9):3239–47.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Li X, Bu X, Lu B, Avraham H, Flavell RA, Lim B. The hematopoiesis-specific GTP-binding protein RhoH is GTPase deficient and modulates activities of other Rho GTPases by an inhibitory function. Mol Cell Biol. 2002;22(4):1158–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  148. Gu Y, Zheng Y, Williams DA. RhoH GTPase: a key regulator of hematopoietic cell proliferation and apoptosis? Cell Cycle. 2005;4(2):201–2.

    CAS  PubMed  Google Scholar 

  149. Gu Y, Chae HD, Siefring JE, Jasti AC, Hildeman DA, Williams DA. RhoH GTPase recruits and activates Zap70 required for T cell receptor signaling and thymocyte development. Nat Immunol. 2006;7(11):1182–90.

    CAS  PubMed  Google Scholar 

  150. Li S, Yamauchi A, Marchal CC, Molitoris JK, Quilliam LA, Dinauer MC. Chemoattractant-stimulated Rac activation in wild-type and Rac2-deficient murine neutrophils: preferential activation of Rac2 and Rac2 gene dosage effect on neutrophil functions. J Immunol. 2002;169(9):5043–51.

    PubMed  Google Scholar 

  151. Dorn T, Kuhn U, Bungartz G, Stiller S, Bauer M, Ellwart J, et al. RhoH is important for positive thymocyte selection and T-cell receptor signaling. Blood. 2007;109(6):2346–55.

    CAS  PubMed  Google Scholar 

  152. Dallery-Prudhomme E, Roumier C, Denis C, Preudhomme C, Kerckaert JP, Galiegue-Zouitina S. Genomic structure and assignment of the RhoH/TTF small GTPase gene (ARHH) to 4p13 by in situ hybridization. Genomics. 1997;43(1):89–94.

    CAS  PubMed  Google Scholar 

  153. Dallery E, Galiègue-Zouitina S, Collyn-d’Hooghe M, Quief S, Denis C, Hildebrand MP, et al. TTF, a gene encoding a novel small G protein, fuses to the lymphoma-associated LAZ3 gene by t(3;4) chromosomal translocation. Oncogene. 1995;10(11):2171–8.

    CAS  PubMed  Google Scholar 

  154. Preudhomme C, Roumier C, Hildebrand MP, Dallery-Prudhomme E, Lantoine D, Laï JL, et al. Nonrandom 4p13 rearrangements of the RhoH/TTF gene, encoding a GTP-binding protein, in non-Hodgkin’s lymphoma and multiple myeloma. Oncogene. 2000;19(16):2023–32.

    CAS  PubMed  Google Scholar 

  155. Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Küppers R, et al. Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature. 2001;412(6844):341–6.

    CAS  PubMed  Google Scholar 

  156. Gaidano G, Pasqualucci L, Capello D, Berra E, Deambrogi C, Rossi D, et al. Aberrant somatic hypermutation in multiple subtypes of AIDS-associated non-Hodgkin lymphoma. Blood. 2003;102(5):1833–41.

    CAS  PubMed  Google Scholar 

  157. Montesinos-Rongen M, Van Roost D, Schaller C, Wiestler OD, Deckert M. Primary diffuse large B-cell lymphomas of the central nervous system are targeted by aberrant somatic hypermutation. Blood. 2004;103(5):1869–75.

    CAS  PubMed  Google Scholar 

  158. Li FY, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews HF, Douek DC, et al. Second messenger role for Mg2+ revealed by human T-cell immunodeficiency. Nature. 2011;475(7357):471–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Chaigne-Delalande B, Li FY, O’Connor GM, Lukacs MJ, Jiang P, Zheng L, et al. Mg2+ regulates cytotoxic functions of NK and CD8 T cells in chronic EBV infection through NKG2D. Science. 2013;341(6142):186–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Goytain A, Quamme GA. Identification and characterization of a novel mammalian Mg2+ transporter with channel-like properties. BMC Genomics. 2005;6:48.

    PubMed Central  PubMed  Google Scholar 

  161. Zhou H, Clapham DE. Mammalian MagT1 and TUSC3 are required for cellular magnesium uptake and vertebrate embryonic development. Proc Natl Acad Sci U S A. 2009;106(37):15750–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  162. Abboud CN, Scully SP, Lichtman AH, Brennan JK, Segel GB. The requirements for ionized calcium and magnesium in lymphocyte proliferation. J Cell Physiol. 1985;122(1):64–72.

    CAS  PubMed  Google Scholar 

  163. Flynn A. Control of in vitro lymphocyte proliferation by copper, magnesium and zinc deficiency. J Nutr. 1984;114(11):2034–42.

    CAS  PubMed  Google Scholar 

  164. Whitney RB, Sutherland RM. The influence of calcium, magnesium and cyclic adenosine 3′,5′-monophosphate on the mixed lymphocyte reaction. J Immunol. 1972;108(5):1179–83.

    CAS  PubMed  Google Scholar 

  165. Modiano JF, Kelepouris E, Kern JA, Nowell PC. Requirement for extracellular calcium or magnesium in mitogen-induced activation of human peripheral blood lymphocytes. J Cell Physiol. 1988;135(3):451–8.

    CAS  PubMed  Google Scholar 

  166. Li FY, Lenardo MJ, Chaigne-Delalande B. Loss of MAGT1 abrogates the Mg2+ flux required for T cell signaling and leads to a novel human primary immunodeficiency. Magnes Res. 2011;24(3):S109–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  167. Orange JS. Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect. 2002;4(15):1545–58.

    CAS  PubMed  Google Scholar 

  168. Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43(3):189–95.

    CAS  PubMed  Google Scholar 

  169. Boxer LA. Severe congenital neutropenia: genetics and pathogenesis. Trans Am Clin Climatol Assoc. 2006;117:13–31; discussion -2.

    PubMed Central  PubMed  Google Scholar 

  170. Rezaei N, Moazzami K, Aghamohammadi A, Klein C. Neutropenia and primary immunodeficiency diseases. Int Rev Immunol. 2009;28(5):335–66.

    CAS  PubMed  Google Scholar 

  171. Rezaei N, Chavoshzadeh Z, R Alaei O, Sandrock I, Klein C. Association of HAX1 deficiency with neurological disorder. Neuropediatrics. 2007;38(5):261–3.

    CAS  PubMed  Google Scholar 

  172. Ishikawa N, Okada S, Miki M, Shirao K, Kihara H, Tsumura M, et al. Neurodevelopmental abnormalities associated with severe congenital neutropenia due to the R86X mutation in the HAX1 gene. J Med Genet. 2008;45(12):802–7.

    CAS  PubMed  Google Scholar 

  173. Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96(7):2317–22.

    CAS  PubMed  Google Scholar 

  174. Takahashi H, Nukiwa T, Basset P, Crystal RG. Myelomonocytic cell lineage expression of the neutrophil elastase gene. J Biol Chem. 1988;263(5):2543–7.

    CAS  PubMed  Google Scholar 

  175. Welte K, Zeidler C. Severe congenital neutropenia. Hematol Oncol Clin North Am. 2009;23(2):307–20.

    PubMed  Google Scholar 

  176. Klein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schäffer AA, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet. 2007;39(1):86–92.

    CAS  PubMed  Google Scholar 

  177. Boztug K, Appaswamy G, Ashikov A, Schäffer AA, Salzer U, Diestelhorst J, et al. A syndrome with congenital neutropenia and mutations in G6PC3. N Engl J Med. 2009;360(1):32–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Devriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van Den Oord JJ, et al. Constitutively activating mutation in WASP causes X-linked severe congenital neutropenia. Nat Genet. 2001;27(3):313–7.

    CAS  PubMed  Google Scholar 

  179. Person RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, et al. Mutations in proto-oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet. 2003;34(3):308–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  180. Bohn G, Allroth A, Brandes G, Thiel J, Glocker E, Schäffer AA, et al. A novel human primary immunodeficiency syndrome caused by deficiency of the endosomal adaptor protein p14. Nat Med. 2007;13(1):38–45.

    CAS  PubMed  Google Scholar 

  181. Ward AC. The role of the granulocyte colony-stimulating factor receptor (G-CSF-R) in disease. Front Biosci. 2007;12:608–18.

    CAS  PubMed  Google Scholar 

  182. Dale DC, Bolyard AA, Schwinzer BG, Pracht G, Bonilla MA, Boxer L, et al. The Severe Chronic Neutropenia International Registry: 10-year follow-up report. Support Cancer Ther. 2006;3(4):220–31.

    PubMed  Google Scholar 

  183. Rosenberg PS, Zeidler C, Bolyard AA, Alter BP, Bonilla MA, Boxer LA, et al. Stable long-term risk of leukaemia in patients with severe congenital neutropenia maintained on G-CSF therapy. Br J Haematol. 2010;150(2):196–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Donadieu J, Leblanc T, Bader Meunier B, Barkaoui M, Fenneteau O, Bertrand Y, et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica. 2005;90(1):45–53.

    PubMed  Google Scholar 

  185. Germeshausen M, Ballmaier M, Welte K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood. 2007;109(1):93–9.

    CAS  PubMed  Google Scholar 

  186. Burroughs L, Woolfrey A, Shimamura A. Shwachman-Diamond syndrome: a review of the clinical presentation, molecular pathogenesis, diagnosis, and treatment. Hematol Oncol Clin North Am. 2009;23(2):233–48.

    PubMed Central  PubMed  Google Scholar 

  187. Dror Y, Freedman MH. Shwachman-Diamond syndrome. Br J Haematol. 2002;118(3):701–13.

    PubMed  Google Scholar 

  188. Andolina JR, Morrison CB, Thompson AA, Chaudhury S, Mack AK, Proytcheva M, et al. Shwachman-Diamond syndrome: diarrhea, no longer required? J Pediatr Hematol Oncol. 2012.

    Google Scholar 

  189. Grinspan ZM, Pikora CA. Infections in patients with Shwachman-Diamond syndrome. Pediatr Infect Dis J. 2005;24(2):179–81.

    PubMed  Google Scholar 

  190. Aggett PJ, Harries JT, Harvey BA, Soothill JF. An inherited defect of neutrophil mobility in Shwachman syndrome. J Pediatr. 1979;94(3):391–4.

    CAS  PubMed  Google Scholar 

  191. Stepanovic V, Wessels D, Goldman FD, Geiger J, Soll DR. The chemotaxis defect of Shwachman-Diamond syndrome leukocytes. Cell Motil Cytoskeleton. 2004;57(3):158–74.

    CAS  PubMed  Google Scholar 

  192. Dror Y, Ginzberg H, Dalal I, Cherepanov V, Downey G, Durie P, et al. Immune function in patients with Shwachman-Diamond syndrome. Br J Haematol. 2001;114(3):712–7.

    CAS  PubMed  Google Scholar 

  193. Kornfeld SJ, Kratz J, Diamond F, Day NK, Good RA. Shwachman-Diamond syndrome associated with hypogammaglobulinemia and growth hormone deficiency. J Allergy Clin Immunol. 1995;96(2):247–50.

    CAS  PubMed  Google Scholar 

  194. Boocock GR, Morrison JA, Popovic M, Richards N, Ellis L, Durie PR, et al. Mutations in SBDS are associated with Shwachman-Diamond syndrome. Nat Genet. 2003;33(1):97–101.

    CAS  PubMed  Google Scholar 

  195. Huang JN, Shimamura A. Clinical spectrum and molecular pathophysiology of Shwachman-Diamond syndrome. Curr Opin Hematol. 2010.

    Google Scholar 

  196. Liu JM, Lipton JM, Mani S. Sixth International Congress on Shwachman-Diamond syndrome: from patients to genes and back. Ann N Y Acad Sci. 2011;1242:26–39.

    CAS  PubMed  Google Scholar 

  197. Saunders EF, Gall G, Freedman MH. Granulopoiesis in Shwachman’s syndrome (pancreatic insufficiency and bone marrow dysfunction). Pediatrics. 1979;64(4):515–9.

    CAS  PubMed  Google Scholar 

  198. Suda T, Mizoguchi H, Miura Y, Kubota K, Ikuta K, Sasaki H, et al. Hemopoietic colony-forming cells in Shwachman’s syndrome. Am J Pediatr Hematol Oncol. 1982;4(2):129–33.

    CAS  PubMed  Google Scholar 

  199. Dror Y, Freedman MH. Shwachman-Diamond syndrome: an inherited preleukemic bone marrow failure disorder with aberrant hematopoietic progenitors and faulty marrow microenvironment. Blood. 1999;94(9):3048–54.

    CAS  PubMed  Google Scholar 

  200. Woods WG, Roloff JS, Lukens JN, Krivit W. The occurrence of leukemia in patients with the Shwachman syndrome. J Pediatr. 1981;99(3):425–8.

    CAS  PubMed  Google Scholar 

  201. Dhanraj S, Manji A, Pinto D, Scherer SW, Favre H, Loh ML, et al. Molecular characteristics of a pancreatic adenocarcinoma associated with Shwachman-Diamond syndrome. Pediatr Blood Cancer. 2013;60(5):754–60.

    PubMed  Google Scholar 

  202. Singh SA, Vlachos A, Morgenstern NJ, Ouansafi I, Ip W, Rommens JM, et al. Breast cancer in a case of Shwachman Diamond syndrome. Pediatr Blood Cancer. 2012;59(5):945–6.

    PubMed  Google Scholar 

  203. Verbrugge J, Tulchinsky M. Lymphoma in a case of Shwachman-Diamond syndrome: PET/CT findings. Clin Nucl Med. 2012;37(1):74–6.

    PubMed  Google Scholar 

  204. Austin KM, Gupta ML, Coats SA, Tulpule A, Mostoslavsky G, Balazs AB, et al. Mitotic spindle destabilization and genomic instability in Shwachman-Diamond syndrome. J Clin Invest. 2008;118(4):1511–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Maserati E, Pressato B, Valli R, Minelli A, Sainati L, Patitucci F, et al. The route to development of myelodysplastic syndrome/acute myeloid leukaemia in Shwachman-Diamond syndrome: the role of ageing, karyotype instability, and acquired chromosome anomalies. Br J Haematol. 2009;145(2):190–7.

    CAS  PubMed  Google Scholar 

  206. Dror Y, Freedman MH. Shwachman-Diamond syndrome marrow cells show abnormally increased apoptosis mediated through the Fas pathway. Blood. 2001;97(10):3011–6.

    CAS  PubMed  Google Scholar 

  207. Rujkijyanont P, Beyene J, Wei K, Khan F, Dror Y. Leukaemia-related gene expression in bone marrow cells from patients with the preleukaemic disorder Shwachman-Diamond syndrome. Br J Haematol. 2007;137(6):537–44.

    CAS  PubMed  Google Scholar 

  208. Bigley V, Haniffa M, Doulatov S, Wang XN, Dickinson R, McGovern N, et al. The human syndrome of dendritic cell, monocyte, B and NK lymphoid deficiency. J Exp Med. 2011;208(2):227–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Hsu AP, Sampaio EP, Khan J, Calvo KR, Lemieux JE, Patel SY, et al. Mutations in GATA2 are associated with the autosomal dominant and sporadic monocytopenia and mycobacterial infection (MonoMAC) syndrome. Blood. 2011;118(10):2653–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Dickinson RE, Griffin H, Bigley V, Reynard LN, Hussain R, Haniffa M, et al. Exome sequencing identifies GATA-2 mutation as the cause of dendritic cell, monocyte, B and NK lymphoid deficiency. Blood. 2011;118(10):2656–8.

    CAS  PubMed  Google Scholar 

  211. Ostergaard P, Simpson MA, Connell FC, Steward CG, Brice G, Woollard WJ, et al. Mutations in GATA2 cause primary lymphedema associated with a predisposition to acute myeloid leukemia (Emberger syndrome). Nat Genet. 2011;43(10):929–31.

    CAS  PubMed  Google Scholar 

  212. Vinh DC, Patel SY, Uzel G, Anderson VL, Freeman AF, Olivier KN, et al. Autosomal dominant and sporadic monocytopenia with susceptibility to mycobacteria, fungi, papillomaviruses, and myelodysplasia. Blood. 2010;115(8):1519–29.

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Rodrigues NP, Janzen V, Forkert R, Dombkowski DM, Boyd AS, Orkin SH, et al. Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood. 2005;106(2):477–84.

    CAS  PubMed  Google Scholar 

  214. Hsu AP, Johnson KD, Falcone EL, Sanalkumar R, Sanchez L, Hickstein DD, et al. GATA2 haploinsufficiency caused by mutations in a conserved intronic element leads to MonoMAC syndrome. Blood. 2013;121(19):3830–7, S1–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  215. Hahn CN, Chong CE, Carmichael CL, Wilkins EJ, Brautigan PJ, Li XC, et al. Heritable GATA2 mutations associated with familial myelodysplastic syndrome and acute myeloid leukemia. Nat Genet. 2011;43(10):1012–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Holme H, Hossain U, Kirwan M, Walne A, Vulliamy T, Dokal I. Marked genetic heterogeneity in familial myelodysplasia/acute myeloid leukaemia. Br J Haematol. 2012;158(2):242–8.

    CAS  PubMed  Google Scholar 

  217. Mansour S, Connell F, Steward C, Ostergaard P, Brice G, Smithson S, et al. Emberger syndrome-primary lymphedema with myelodysplasia: report of seven new cases. Am J Med Genet A. 2010;152A(9):2287–96.

    PubMed  Google Scholar 

  218. Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, et al. An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature. 1994;371(6494):221–6.

    CAS  PubMed  Google Scholar 

  219. Tsai FY, Orkin SH. Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood. 1997;89(10):3636–43.

    CAS  PubMed  Google Scholar 

  220. Kazenwadel J, Secker GA, Liu YJ, Rosenfeld JA, Wildin RS, Cuellar-Rodriguez J, et al. Loss-of-function germline GATA2 mutations in patients with MDS/AML or MonoMAC syndrome and primary lymphedema reveal a key role for GATA2 in the lymphatic vasculature. Blood. 2012;119(5):1283–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Johnson KD, Hsu AP, Ryu MJ, Wang J, Gao X, Boyer ME, et al. Cis-element mutated in GATA2-dependent immunodeficiency governs hematopoiesis and vascular integrity. J Clin Invest. 2012;122(10):3692–704.

    CAS  PubMed Central  PubMed  Google Scholar 

  222. Orth G. Genetics of epidermodysplasia verruciformis: insights into host defense against papillomaviruses. Semin Immunol. 2006;18(6):362–74.

    CAS  PubMed  Google Scholar 

  223. Gewirtzman A, Bartlett B, Tyring S. Epidermodysplasia verruciformis and human papilloma virus. Curr Opin Infect Dis. 2008;21(2):141–6.

    PubMed  Google Scholar 

  224. de Oliveira WR, Festa Neto C, Rady PL, Tyring SK. Clinical aspects of epidermodysplasia verruciformis. J Eur Acad Dermatol Venereol. 2003;17(4):394–8.

    PubMed  Google Scholar 

  225. Segura S, Carrera C, Ferrando J, Mascaró JM, Palou J, Malvehy J, et al. Dermoscopy in epidermodysplasia verruciformis. Dermatol Surg. 2006;32(1):103–6.

    CAS  PubMed  Google Scholar 

  226. Lutzner MA, Blanchet-Bardon C, Orth G. Clinical observations, virologic studies, and treatment trials in patients with epidermodysplasia verruciformis, a disease induced by specific human papillomaviruses. J Invest Dermatol. 1984;83(1 Suppl):18s–25.

    CAS  PubMed  Google Scholar 

  227. Majewski S, Jabłońska S. Epidermodysplasia verruciformis as a model of human papillomavirus-induced genetic cancer of the skin. Arch Dermatol. 1995;131(11):1312–8.

    CAS  PubMed  Google Scholar 

  228. Lutzner MA. Epidermodysplasia verruciformis. An autosomal recessive disease characterized by viral warts and skin cancer. A model for viral oncogenesis. Bull Cancer. 1978;65(2):169–82.

    CAS  PubMed  Google Scholar 

  229. Androphy EJ, Dvoretzky I, Lowy DR. X-linked inheritance of epidermodysplasia verruciformis. Genetic and virologic studies of a kindred. Arch Dermatol. 1985;121(7):864–8.

    CAS  PubMed  Google Scholar 

  230. McDermott DF, Gammon B, Snijders PJ, Mbata I, Phifer B, Howland Hartley A, et al. Autosomal dominant epidermodysplasia verruciformis lacking a known EVER1 or EVER2 mutation. Pediatr Dermatol. 2009;26(3):306–10.

    PubMed Central  PubMed  Google Scholar 

  231. Ramoz N, Taïeb A, Rueda LA, Montoya LS, Bouadjar B, Favre M, et al. Evidence for a nonallelic heterogeneity of epidermodysplasia verruciformis with two susceptibility loci mapped to chromosome regions 2p21-p24 and 17q25. J Invest Dermatol. 2000;114(6):1148–53.

    CAS  PubMed  Google Scholar 

  232. Ramoz N, Rueda LA, Bouadjar B, Montoya LS, Orth G, Favre M. Mutations in two adjacent novel genes are associated with epidermodysplasia verruciformis. Nat Genet. 2002;32(4):579–81.

    CAS  PubMed  Google Scholar 

  233. Lazarczyk M, Cassonnet P, Pons C, Jacob Y, Favre M. The EVER proteins as a natural barrier against papillomaviruses: a new insight into the pathogenesis of human papillomavirus infections. Microbiol Mol Biol Rev. 2009;73(2):348–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Yu M, Lee WW, Tomar D, Pryshchep S, Czesnikiewicz-Guzik M, Lamar DL, et al. Regulation of T cell receptor signaling by activation-induced zinc influx. J Exp Med. 2011;208(4):775–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  235. Pereira de Oliveira WR, Carrasco S, Neto CF, Rady P, Tyring SK. Nonspecific cell-mediated immunity in patients with epidermodysplasia verruciformis. J Dermatol. 2003;30(3):203–9.

    PubMed  Google Scholar 

  236. Majewski S, Skopinska-Rozewska E, Jabłonska S, Wasik M, Misiewicz J, Orth G. Partial defects of cell-mediated immunity in patients with epidermodysplasia verruciformis. J Am Acad Dermatol. 1986;15(5 Pt 1):966–73.

    CAS  PubMed  Google Scholar 

  237. Majewski S, Malejczyk J, Jablonska S, Misiewicz J, Rudnicka L, Obalek S, et al. Natural cell-mediated cytotoxicity against various target cells in patients with epidermodysplasia verruciformis. J Am Acad Dermatol. 1990;22(3):423–7.

    CAS  PubMed  Google Scholar 

  238. Cooper KD, Androphy EJ, Lowy D, Katz SI. Antigen presentation and T-cell activation in epidermodysplasia verruciformis. J Invest Dermatol. 1990;94(6):769–76.

    CAS  PubMed  Google Scholar 

  239. Diaz GA. CXCR4 mutations in WHIM syndrome: a misguided immune system? Immunol Rev. 2005;203:235–43.

    CAS  PubMed  Google Scholar 

  240. Diaz GA, Gulino AV. WHIM syndrome: a defect in CXCR4 signaling. Curr Allergy Asthma Rep. 2005;5(5):350–5.

    CAS  PubMed  Google Scholar 

  241. Kawai T, Malech HL. WHIM syndrome: congenital immune deficiency disease. Curr Opin Hematol. 2009;16(1):20–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  242. Beaussant Cohen S, Fenneteau O, Plouvier E, Rohrlich PS, Daltroff G, Plantier I, et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J Rare Dis. 2012;7:71.

    PubMed Central  PubMed  Google Scholar 

  243. Imashuku S, Miyagawa A, Chiyonobu T, Ishida H, Yoshihara T, Teramura T, et al. Epstein-Barr virus-associated T-lymphoproliferative disease with hemophagocytic syndrome, followed by fatal intestinal B lymphoma in a young adult female with WHIM syndrome. Warts, hypogammaglobulinemia, infections, and myelokathexis. Ann Hematol. 2002;81(8):470–3.

    CAS  PubMed  Google Scholar 

  244. Chae KM, Ertle JO, Tharp MD. B-cell lymphoma in a patient with WHIM syndrome. J Am Acad Dermatol. 2001;44(1):124–8.

    CAS  PubMed  Google Scholar 

  245. Tarzi MD, Jenner M, Hattotuwa K, Faruqi AZ, Diaz GA, Longhurst HJ. Sporadic case of warts, hypogammaglobulinemia, immunodeficiency, and myelokathexis syndrome. J Allergy Clin Immunol. 2005;116(5):1101–5.

    PubMed  Google Scholar 

  246. Balabanian K, Lagane B, Pablos JL, Laurent L, Planchenault T, Verola O, et al. WHIM syndromes with different genetic anomalies are accounted for by impaired CXCR4 desensitization to CXCL12. Blood. 2005;105(6):2449–57.

    CAS  PubMed  Google Scholar 

  247. Hernandez PA, Gorlin RJ, Lukens JN, Taniuchi S, Bohinjec J, Francois F, et al. Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nat Genet. 2003;34(1):70–4.

    CAS  PubMed  Google Scholar 

  248. Murphy PM, Baggiolini M, Charo IF, Hébert CA, Horuk R, Matsushima K, et al. International union of pharmacology XXII. Nomenclature for chemokine receptors. Pharmacol Rev. 2000;52(1):145–76.

    CAS  PubMed  Google Scholar 

  249. Busillo JM, Benovic JL. Regulation of CXCR4 signaling. Biochim Biophys Acta. 2007;1768(4):952–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Liu Q, Chen H, Ojode T, Gao X, Anaya-O’Brien S, Turner NA, et al. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4. Blood. 2012;120(1):181–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  251. Gorlin RJ, Gelb B, Diaz GA, Lofsness KG, Pittelkow MR, Fenyk JR. WHIM syndrome, an autosomal dominant disorder: clinical, hematological, and molecular studies. Am J Med Genet. 2000;91(5):368–76.

    CAS  PubMed  Google Scholar 

  252. Arai J, Wakiguchi H, Hisakawa H, Kubota H, Kurashige T. A variant of myelokathexis with hypogammaglobulinemia: lymphocytes as well as neutrophils may reverse in response to infections. Pediatr Hematol Oncol. 2000;17(2):171–6.

    CAS  PubMed  Google Scholar 

  253. Gulino AV, Moratto D, Sozzani S, Cavadini P, Otero K, Tassone L, et al. Altered leukocyte response to CXCL12 in patients with warts hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome. Blood. 2004;104(2):444–52.

    CAS  PubMed  Google Scholar 

  254. Tassone L, Moratto D, Vermi W, De Francesco M, Notarangelo LD, Porta F, et al. Defect of plasmacytoid dendritic cells in warts, hypogammaglobulinemia, infections, myelokathexis (WHIM) syndrome patients. Blood. 2010;116(23):4870–3.

    CAS  PubMed  Google Scholar 

  255. Purtilo DT, Cassel CK, Yang JP, Harper R. X-linked recessive progressive combined variable immunodeficiency (Duncan’s disease). Lancet. 1975;1(7913):935–40.

    CAS  PubMed  Google Scholar 

  256. Purtilo DT, Grierson HL. Methods of detection of new families with X-linked lymphoproliferative disease. Cancer Genet Cytogenet. 1991;51(2):143–53.

    CAS  PubMed  Google Scholar 

  257. Sumegi J, Huang D, Lanyi A, Davis JD, Seemayer TA, Maeda A, et al. Correlation of mutations of the SH2D1A gene and epstein-barr virus infection with clinical phenotype and outcome in X-linked lymphoproliferative disease. Blood. 2000;96(9):3118–25.

    CAS  PubMed  Google Scholar 

  258. Filipovich AH, Zhang K, Snow AL, Marsh RA. X-linked lymphoproliferative syndromes: brothers or distant cousins? Blood. 2010;116(18):3398–408.

    CAS  PubMed Central  PubMed  Google Scholar 

  259. Rezaei N, Mahmoudi E, Aghamohammadi A, Das R, Nichols KE. X-linked lymphoproliferative syndrome: a genetic condition typified by the triad of infection, immunodeficiency and lymphoma. Br J Haematol. 2011;152(1):13–30.

    CAS  PubMed  Google Scholar 

  260. Pachlopnik Schmid J, Canioni D, Moshous D, Touzot F, Mahlaoui N, Hauck F, et al. Clinical similarities and differences of patients with X-linked lymphoproliferative syndrome type 1 (XLP-1/SAP deficiency) versus type 2 (XLP-2/XIAP deficiency). Blood. 2011;117(5):1522–9.

    PubMed  Google Scholar 

  261. Purtilo DT, Grierson HL, Davis JR, Okano M. The X-linked lymphoproliferative disease: from autopsy toward cloning the gene 1975–1990. Pediatr Pathol. 1991;11(5):685–710.

    CAS  PubMed  Google Scholar 

  262. Dutz JP, Benoit L, Wang X, Demetrick DJ, Junker A, de Sa D, et al. Lymphocytic vasculitis in X-linked lymphoproliferative disease. Blood. 2001;97(1):95–100.

    CAS  PubMed  Google Scholar 

  263. Coffey AJ, Brooksbank RA, Brandau O, Oohashi T, Howell GR, Bye JM, et al. Host response to EBV infection in X-linked lymphoproliferative disease results from mutations in an SH2-domain encoding gene. Nat Genet. 1998;20(2):129–35.

    CAS  PubMed  Google Scholar 

  264. Sayos J, Wu C, Morra M, Wang N, Zhang X, Allen D, et al. The X-linked lymphoproliferative-disease gene product SAP regulates signals induced through the co-receptor SLAM. Nature. 1998;395(6701):462–9.

    CAS  PubMed  Google Scholar 

  265. Nichols KE, Harkin DP, Levitz S, Krainer M, Kolquist KA, Genovese C, et al. Inactivating mutations in an SH2 domain-encoding gene in X-linked lymphoproliferative syndrome. Proc Natl Acad Sci U S A. 1998;95(23):13765–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  266. Rigaud S, Fondanèche MC, Lambert N, Pasquier B, Mateo V, Soulas P, et al. XIAP deficiency in humans causes an X-linked lymphoproliferative syndrome. Nature. 2006;444(7115):110–4.

    CAS  PubMed  Google Scholar 

  267. Shinozaki K, Kanegane H, Matsukura H, Sumazaki R, Tsuchida M, Makita M, et al. Activation-dependent T cell expression of the X-linked lymphoproliferative disease gene product SLAM-associated protein and its assessment for patient detection. Int Immunol. 2002;14(10):1215–23.

    CAS  PubMed  Google Scholar 

  268. Nagy N, Mattsson K, Maeda A, Liu A, Székely L, Klein E. The X-linked lymphoproliferative disease gene product SAP is expressed in activated T and NK cells. Immunol Lett. 2002;82(1–2):141–7.

    CAS  PubMed  Google Scholar 

  269. Nichols KE, Hom J, Gong SY, Ganguly A, Ma CS, Cannons JL, et al. Regulation of NKT cell development by SAP, the protein defective in XLP. Nat Med. 2005;11(3):340–5.

    CAS  PubMed  Google Scholar 

  270. Ma CS, Nichols KE, Tangye SG. Regulation of cellular and humoral immune responses by the SLAM and SAP families of molecules. Annu Rev Immunol. 2007;25:337–79.

    CAS  PubMed  Google Scholar 

  271. Dong Z, Veillette A. How do SAP family deficiencies compromise immunity? Trends Immunol. 2010;31(8):295–302.

    CAS  PubMed  Google Scholar 

  272. Snow AL, Pandiyan P, Zheng L, Krummey SM, Lenardo MJ. The power and the promise of restimulation-induced cell death in human immune diseases. Immunol Rev. 2010;236:68–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  273. Seemayer TA, Gross TG, Egeler RM, Pirruccello SJ, Davis JR, Kelly CM, et al. X-linked lymphoproliferative disease: twenty-five years after the discovery. Pediatr Res. 1995;38(4):471–8.

    CAS  PubMed  Google Scholar 

  274. Harrington DS, Weisenburger DD, Purtilo DT. Malignant lymphoma in the X-linked lymphoproliferative syndrome. Cancer. 1987;59(8):1419–29.

    CAS  PubMed  Google Scholar 

  275. Egeler RM, de Kraker J, Slater R, Purtilo DT. Documentation of Burkitt lymphoma with t(8;14) (q24;q32) in X-linked lymphoproliferative disease. Cancer. 1992;70(3):683–7.

    CAS  PubMed  Google Scholar 

  276. Rao VK, Straus SE. Causes and consequences of the autoimmune lymphoproliferative syndrome. Hematology. 2006;11(1):15–23.

    CAS  PubMed  Google Scholar 

  277. Oliveira JB, Bleesing JJ, Dianzani U, Fleisher TA, Jaffe ES, Lenardo MJ, et al. Revised diagnostic criteria and classification for the autoimmune lymphoproliferative syndrome (ALPS): report from the 2009 NIH International Workshop. Blood. 2010;116(14):e35–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  278. Caminha I, Fleisher TA, Hornung RL, Dale JK, Niemela JE, Price S, et al. Using biomarkers to predict the presence of FAS mutations in patients with features of the autoimmune lymphoproliferative syndrome. J Allergy Clin Immunol. 2010;125(4):946–9.e6.

    CAS  PubMed Central  PubMed  Google Scholar 

  279. Snow AL, Marsh RA, Krummey SM, Roehrs P, Young LR, Zhang K, et al. Restimulation-induced apoptosis of T cells is impaired in patients with X-linked lymphoproliferative disease caused by SAP deficiency. J Clin Invest. 2009;119(10):2976–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Lenardo M, Chan KM, Hornung F, McFarland H, Siegel R, Wang J, et al. Mature T lymphocyte apoptosis–immune regulation in a dynamic and unpredictable antigenic environment. Annu Rev Immunol. 1999;17:221–53.

    CAS  PubMed  Google Scholar 

  281. Lenardo MJ, Oliveira JB, Zheng L, Rao VK. ALPS-ten lessons from an international workshop on a genetic disease of apoptosis. Immunity. 2010;32(3):291–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  282. Deutsch M, Tsopanou E, Dourakis SP. The autoimmune lymphoproliferative syndrome (Canale-Smith) in adulthood. Clin Rheumatol. 2004;23(1):43–4.

    CAS  PubMed  Google Scholar 

  283. Turbyville JC, Rao VK. The autoimmune lymphoproliferative syndrome: a rare disorder providing clues about normal tolerance. Autoimmun Rev. 2010;9(7):488–93.

    CAS  PubMed  Google Scholar 

  284. Madkaikar M, Mhatre S, Gupta M, Ghosh K. Advances in autoimmune lymphoproliferative syndromes. Eur J Haematol. 2011;87(1):1–9.

    CAS  PubMed  Google Scholar 

  285. Straus SE, Sneller M, Lenardo MJ, Puck JM, Strober W. An inherited disorder of lymphocyte apoptosis: the autoimmune lymphoproliferative syndrome. Ann Intern Med. 1999;130(7):591–601.

    CAS  PubMed  Google Scholar 

  286. Müschen M, Re D, Bräuninger A, Wolf J, Hansmann ML, Diehl V, et al. Somatic mutations of the CD95 gene in Hodgkin and Reed-Sternberg cells. Cancer Res. 2000;60(20):5640–3.

    PubMed  Google Scholar 

  287. Müschen M, Re D, Jungnickel B, Diehl V, Rajewsky K, Küppers R. Somatic mutation of the CD95 gene in human B cells as a side-effect of the germinal center reaction. J Exp Med. 2000;192(12):1833–40.

    PubMed Central  PubMed  Google Scholar 

  288. Müschen M, Warskulat U, Beckmann MW. Defining CD95 as a tumor suppressor gene. J Mol Med (Berl). 2000;78(6):312–25.

    Google Scholar 

  289. Poppema S, Maggio E, van den Berg A. Development of lymphoma in Autoimmune Lymphoproliferative Syndrome (ALPS) and its relationship to Fas gene mutations. Leuk Lymphoma. 2004;45(3):423–31.

    CAS  PubMed  Google Scholar 

  290. Straus SE, Jaffe ES, Puck JM, Dale JK, Elkon KB, Rösen-Wolff A, et al. The development of lymphomas in families with autoimmune lymphoproliferative syndrome with germline Fas mutations and defective lymphocyte apoptosis. Blood. 2001;98(1):194–200.

    CAS  PubMed  Google Scholar 

  291. Grønbaek K, Straten PT, Ralfkiaer E, Ahrenkiel V, Andersen MK, Hansen NE, et al. Somatic Fas mutations in non-Hodgkin’s lymphoma: association with extranodal disease and autoimmunity. Blood. 1998;92(9):3018–24.

    PubMed  Google Scholar 

  292. Shin MS, Kim HS, Kang CS, Park WS, Kim SY, Lee SN, et al. Inactivating mutations of CASP10 gene in non-Hodgkin lymphomas. Blood. 2002;99(11):4094–9.

    CAS  PubMed  Google Scholar 

  293. Maggio EM, Van Den Berg A, de Jong D, Diepstra A, Poppema S. Low frequency of FAS mutations in Reed-Sternberg cells of Hodgkin’s lymphoma. Am J Pathol. 2003;162(1):29–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Anderson MS, Venanzi ES, Klein L, Chen Z, Berzins SP, Turley SJ, et al. Projection of an immunological self shadow within the thymus by the aire protein. Science. 2002;298(5597):1395–401.

    CAS  PubMed  Google Scholar 

  295. Gardner JM, Devoss JJ, Friedman RS, Wong DJ, Tan YX, Zhou X, et al. Deletional tolerance mediated by extrathymic Aire-expressing cells. Science. 2008;321(5890):843–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  296. Nagamine K, Peterson P, Scott HS, Kudoh J, Minoshima S, Heino M, et al. Positional cloning of the APECED gene. Nat Genet. 1997;17(4):393–8.

    CAS  PubMed  Google Scholar 

  297. Consortium F-GA. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet. 1997;17(4):399–403.

    Google Scholar 

  298. Kisand K, Bøe Wolff AS, Podkrajsek KT, Tserel L, Link M, Kisand KV, et al. Chronic mucocutaneous candidiasis in APECED or thymoma patients correlates with autoimmunity to Th17-associated cytokines. J Exp Med. 2010;207(2):299–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Puel A, Döffinger R, Natividad A, Chrabieh M, Barcenas-Morales G, Picard C, et al. Autoantibodies against IL-17A, IL-17F, and IL-22 in patients with chronic mucocutaneous candidiasis and autoimmune polyendocrine syndrome type I. J Exp Med. 2010;207(2):291–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  300. Rautemaa R, Hietanen J, Niissalo S, Pirinen S, Perheentupa J. Oral and oesophageal squamous cell carcinoma–a complication or component of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED, APS-I). Oral Oncol. 2007;43(6):607–13.

    PubMed  Google Scholar 

  301. Firth NA, O’Grady JF, Reade PC. Oral squamous cell carcinoma in a young person with candidosis endocrinopathy syndrome: a case report. Int J Oral Maxillofac Surg. 1997;26(1):42–4.

    CAS  PubMed  Google Scholar 

  302. Rosa DD, Pasqualotto AC, Denning DW. Chronic mucocutaneous candidiasis and oesophageal cancer. Med Mycol. 2008;46(1):85–91.

    PubMed  Google Scholar 

  303. McGurk M, Holmes M. Chronic muco-cutaneous candidiasis and oral neoplasia. J Laryngol Otol. 1988;102(7):643–5.

    CAS  PubMed  Google Scholar 

  304. Field EA, Field JK, Martin MV. Does Candida have a role in oral epithelial neoplasia? J Med Vet Mycol. 1989;27(5):277–94.

    CAS  PubMed  Google Scholar 

  305. Krogh P, Hald B, Holmstrup P. Possible mycological etiology of oral mucosal cancer: catalytic potential of infecting Candida albicans and other yeasts in production of N-nitrosobenzylmethylamine. Carcinogenesis. 1987;8(10):1543–8.

    CAS  PubMed  Google Scholar 

  306. O’Grady JF, Reade PC. Candida albicans as a promoter of oral mucosal neoplasia. Carcinogenesis. 1992;13(5):783–6.

    PubMed  Google Scholar 

  307. Revy P, Buck D, le Deist F, de Villartay JP. The repair of DNA damages/modifications during the maturation of the immune system: lessons from human primary immunodeficiency disorders and animal models. Adv Immunol. 2005;87:237–95.

    CAS  PubMed  Google Scholar 

  308. Moses RE. DNA damage processing defects and disease. Annu Rev Genomics Hum Genet. 2001;2:41–68.

    CAS  PubMed  Google Scholar 

  309. de Villartay JP, Fischer A, Durandy A. The mechanisms of immune diversification and their disorders. Nat Rev Immunol. 2003;3(12):962–72.

    PubMed  Google Scholar 

  310. de Miranda NF, Björkman A, Pan-Hammarström Q. DNA repair: the link between primary immunodeficiency and cancer. Ann N Y Acad Sci. 2011;1246:50–63.

    PubMed  Google Scholar 

  311. Patiroglu T, Eke Gungor H, Arslan D, Deniz K, Unal E, Coskun A. Gastric signet ring carcinoma in a patient with ataxia-telangiectasia: a case report and review of the literature. J Pediatr Hematol Oncol. 2012.

    Google Scholar 

  312. Peterson RD, Funkhouser JD, Tuck-Muller CM, Gatti RA. Cancer susceptibility in ataxia-telangiectasia. Leukemia. 1992;6 Suppl 1:8–13.

    PubMed  Google Scholar 

  313. Taylor AM, Metcalfe JA, Thick J, Mak YF. Leukemia and lymphoma in ataxia telangiectasia. Blood. 1996;87(2):423–38.

    CAS  PubMed  Google Scholar 

  314. Kondratenko I, Paschenko O, Polyakov A, Bologov A. Nijmegen breakage syndrome. Adv Exp Med Biol. 2007;601:61–7.

    PubMed  Google Scholar 

  315. German J. Bloom’s syndrome. XX. The first 100 cancers. Cancer Genet Cytogenet. 1997;93(1):100–6.

    CAS  PubMed  Google Scholar 

  316. Enders A, Fisch P, Schwarz K, Duffner U, Pannicke U, Nikolopoulos E, et al. A severe form of human combined immunodeficiency due to mutations in DNA ligase IV. J Immunol. 2006;176(8):5060–8.

    CAS  PubMed  Google Scholar 

  317. Toita N, Hatano N, Ono S, Yamada M, Kobayashi R, Kobayashi I, et al. Epstein-Barr virus-associated B-cell lymphoma in a patient with DNA ligase IV (LIG4) syndrome. Am J Med Genet A. 2007;143(7):742–5.

    Google Scholar 

  318. Moshous D, Callebaut I, de Chasseval R, Poinsignon C, Villey I, Fischer A, et al. The V(D)J recombination/DNA repair factor artemis belongs to the metallo-beta-lactamase family and constitutes a critical developmental checkpoint of the lymphoid system. Ann N Y Acad Sci. 2003;987:150–7.

    CAS  PubMed  Google Scholar 

  319. Eisner JM, Russell M. Cartilage hair hypoplasia and multiple basal cell carcinomas. J Am Acad Dermatol. 2006;54(2 Suppl):S8–10.

    PubMed  Google Scholar 

  320. De Vos M, Hayward BE, Charlton R, Taylor GR, Glaser AW, Picton S, et al. PMS2 mutations in childhood cancer. J Natl Cancer Inst. 2006;98(5):358–61.

    PubMed  Google Scholar 

  321. Ahmed M, Rahman N. ATM and breast cancer susceptibility. Oncogene. 2006;25(43):5906–11.

    CAS  PubMed  Google Scholar 

  322. Ciara E, Piekutowska-Abramczuk D, Popowska E, Grajkowska W, Barszcz S, Perek D, et al. Heterozygous germ-line mutations in the NBN gene predispose to medulloblastoma in pediatric patients. Acta Neuropathol. 2010;119(3):325–34.

    CAS  PubMed  Google Scholar 

  323. Gruber SB, Ellis NA, Scott KK, Almog R, Kolachana P, Bonner JD, et al. BLM heterozygosity and the risk of colorectal cancer. Science. 2002;297(5589):2013.

    CAS  PubMed  Google Scholar 

  324. Lynch HT, Lynch PM, Lanspa SJ, Snyder CL, Lynch JF, Boland CR. Review of the Lynch syndrome: history, molecular genetics, screening, differential diagnosis, and medicolegal ramifications. Clin Genet. 2009;76(1):1–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  325. Sowerwine KJ, Holland SM, Freeman AF. Hyper-IgE syndrome update. Ann N Y Acad Sci. 2012;1250:25–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  326. Heimall J, Freeman A, Holland SM. Pathogenesis of hyper IgE syndrome. Clin Rev Allergy Immunol. 2010;38(1):32–8.

    CAS  PubMed  Google Scholar 

  327. Minegishi Y. Hyper-IgE syndrome. Curr Opin Immunol. 2009;21(5):487–92.

    CAS  PubMed  Google Scholar 

  328. Davis SD, Schaller J, Wedgwood RJ. Job’s syndrome. Recurrent, “cold”, staphylococcal abscesses. Lancet. 1966;1(7445):1013–5.

    CAS  PubMed  Google Scholar 

  329. Freeman AF, Kleiner DE, Nadiminti H, Davis J, Quezado M, Anderson V, et al. Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol. 2007;119(5):1234–40.

    CAS  PubMed  Google Scholar 

  330. Buckley RH. The hyper-IgE syndrome. Clin Rev Allergy Immunol. 2001;20(1):139–54.

    CAS  PubMed  Google Scholar 

  331. Ma CS, Chew GY, Simpson N, Priyadarshi A, Wong M, Grimbacher B, et al. Deficiency of Th17 cells in hyper IgE syndrome due to mutations in STAT3. J Exp Med. 2008;205(7):1551–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  332. Mazerolles F, Picard C, Kracker S, Fischer A, Durandy A. Blood CD4+CD45RO+CXCR5+ T cells are decreased but partially functional in signal transducer and activator of transcription 3 deficiency. J Allergy Clin Immunol. 2013;131(4):1146–56, 56.e1–5.

    CAS  PubMed  Google Scholar 

  333. Grimbacher B, Holland SM, Gallin JI, Greenberg F, Hill SC, Malech HL, et al. Hyper-IgE syndrome with recurrent infections–an autosomal dominant multisystem disorder. N Engl J Med. 1999;340(9):692–702.

    CAS  PubMed  Google Scholar 

  334. Höger PH, Boltshauser E, Hitzig WH. Craniosynostosis in hyper-IgE-syndrome. Eur J Pediatr. 1985;144(4):414–7.

    PubMed  Google Scholar 

  335. O’Connell AC, Puck JM, Grimbacher B, Facchetti F, Majorana A, Gallin JI, et al. Delayed eruption of permanent teeth in hyperimmunoglobulinemia E recurrent infection syndrome. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000;89(2):177–85.

    PubMed  Google Scholar 

  336. Ling JC, Freeman AF, Gharib AM, Arai AE, Lederman RJ, Rosing DR, et al. Coronary artery aneurysms in patients with hyper IgE recurrent infection syndrome. Clin Immunol. 2007;122(3):255–8.

    CAS  PubMed  Google Scholar 

  337. Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1608–19.

    CAS  PubMed  Google Scholar 

  338. Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448(7157):1058–62.

    CAS  PubMed  Google Scholar 

  339. Akira S. Roles of STAT3 defined by tissue-specific gene targeting. Oncogene. 2000;19(21):2607–11.

    CAS  PubMed  Google Scholar 

  340. Gorin LJ, Jeha SC, Sullivan MP, Rosenblatt HM, Shearer WT. Burkitt’s lymphoma developing in a 7-year-old boy with hyper-IgE syndrome. J Allergy Clin Immunol. 1989;83(1):5–10.

    CAS  PubMed  Google Scholar 

  341. Leonard GD, Posadas E, Herrmann PC, Anderson VL, Jaffe ES, Holland SM, et al. Non-Hodgkin’s lymphoma in job’s syndrome: a case report and literature review. Leuk Lymphoma. 2004;45(12):2521–5.

    PubMed  Google Scholar 

  342. Kashef MA, Kashef S, Handjani F, Karimi M. Hodgkin lymphoma developing in a 4.5-year-old girl with hyper-IgE syndrome. Pediatr Hematol Oncol. 2006;23(1):59–63.

    PubMed  Google Scholar 

  343. Oztop I, Demirkan B, Tarhan O, Kayahan H, Yilmaz U, Kargi A, et al. The development of pulmonary adenocarcinoma in a patient with Job’s syndrome, a rare immunodeficiency condition. Tumori. 2004;90(1):132–5.

    PubMed  Google Scholar 

  344. Kirchhausen T, Rosen FS. Disease mechanism: unravelling Wiskott-Aldrich syndrome. Curr Biol. 1996;6(6):676–8.

    CAS  PubMed  Google Scholar 

  345. Sullivan KE, Mullen CA, Blaese RM, Winkelstein JA. A multiinstitutional survey of the Wiskott-Aldrich syndrome. J Pediatr. 1994;125(6 Pt 1):876–85.

    CAS  PubMed  Google Scholar 

  346. Dupuis-Girod S, Medioni J, Haddad E, Quartier P, Cavazzana-Calvo M, Le Deist F, et al. Autoimmunity in Wiskott-Aldrich syndrome: risk factors, clinical features, and outcome in a single-center cohort of 55 patients. Pediatrics. 2003;111(5 Pt 1):e622–7.

    PubMed  Google Scholar 

  347. Massaad MJ, Ramesh N, Geha RS. Wiskott-Aldrich syndrome: a comprehensive review. Ann N Y Acad Sci. 2013;1285(1):26–43.

    CAS  PubMed  Google Scholar 

  348. Imai K, Morio T, Zhu Y, Jin Y, Itoh S, Kajiwara M, et al. Clinical course of patients with WASP gene mutations. Blood. 2004;103(2):456–64.

    CAS  PubMed  Google Scholar 

  349. Shcherbina A, Candotti F, Rosen FS, Remold-O’Donnell E. High incidence of lymphomas in a subgroup of Wiskott-Aldrich syndrome patients. Br J Haematol. 2003;121(3):529–30.

    PubMed  Google Scholar 

  350. Villa A, Notarangelo L, Macchi P, Mantuano E, Cavagni G, Brugnoni D, et al. X-linked thrombocytopenia and Wiskott-Aldrich syndrome are allelic diseases with mutations in the WASP gene. Nat Genet. 1995;9(4):414–7.

    CAS  PubMed  Google Scholar 

  351. Zhu Q, Zhang M, Blaese RM, Derry JM, Junker A, Francke U, et al. The Wiskott-Aldrich syndrome and X-linked congenital thrombocytopenia are caused by mutations of the same gene. Blood. 1995;86(10):3797–804.

    CAS  PubMed  Google Scholar 

  352. Ancliff PJ, Blundell MP, Cory GO, Calle Y, Worth A, Kempski H, et al. Two novel activating mutations in the Wiskott-Aldrich syndrome protein result in congenital neutropenia. Blood. 2006;108(7):2182–9.

    CAS  PubMed  Google Scholar 

  353. Beel K, Cotter MM, Blatny J, Bond J, Lucas G, Green F, et al. A large kindred with X-linked neutropenia with an I294T mutation of the Wiskott-Aldrich syndrome gene. Br J Haematol. 2009;144(1):120–6.

    PubMed Central  PubMed  Google Scholar 

  354. Ochs HD, Filipovich AH, Veys P, Cowan MJ, Kapoor N. Wiskott-Aldrich syndrome: diagnosis, clinical and laboratory manifestations, and treatment. Biol Blood Marrow Transplant. 2009;15(1 Suppl):84–90.

    PubMed  Google Scholar 

  355. Picard C, Mellouli F, Duprez R, Chédeville G, Neven B, Fraitag S, et al. Kaposi’s sarcoma in a child with Wiskott-Aldrich syndrome. Eur J Pediatr. 2006;165(7):453–7.

    PubMed  Google Scholar 

  356. De Meester J, Calvez R, Valitutti S, Dupré L. The Wiskott-Aldrich syndrome protein regulates CTL cytotoxicity and is required for efficient killing of B cell lymphoma targets. J Leukoc Biol. 2010;88(5):1031–40.

    PubMed  Google Scholar 

  357. Gismondi A, Cifaldi L, Mazza C, Giliani S, Parolini S, Morrone S, et al. Impaired natural and CD16-mediated NK cell cytotoxicity in patients with WAS and XLT: ability of IL-2 to correct NK cell functional defect. Blood. 2004;104(2):436–43.

    CAS  PubMed  Google Scholar 

  358. Orange JS, Ramesh N, Remold-O’Donnell E, Sasahara Y, Koopman L, Byrne M, et al. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses. Proc Natl Acad Sci U S A. 2002;99(17):11351–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  359. Locci M, Draghici E, Marangoni F, Bosticardo M, Catucci M, Aiuti A, et al. The Wiskott-Aldrich syndrome protein is required for iNKT cell maturation and function. J Exp Med. 2009;206(4):735–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  360. Astrakhan A, Ochs HD, Rawlings DJ. Wiskott-Aldrich syndrome protein is required for homeostasis and function of invariant NKT cells. J Immunol. 2009;182(12):7370–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  361. Schuetz C, Niehues T, Friedrich W, Schwarz K. Autoimmunity, autoinflammation and lymphoma in combined immunodeficiency (CID). Autoimmun Rev. 2010;9(7):477–82.

    CAS  PubMed  Google Scholar 

  362. Blundell MP, Worth A, Bouma G, Thrasher AJ. The Wiskott-Aldrich syndrome: the actin cytoskeleton and immune cell function. Dis Markers. 2010;29(3–4):157–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  363. Moulding DA, Blundell MP, Spiller DG, White MR, Cory GO, Calle Y, et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J Exp Med. 2007;204(9):2213–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  364. Moratto D, Giliani S, Bonfim C, Mazzolari E, Fischer A, Ochs HD, et al. Long-term outcome and lineage-specific chimerism in 194 patients with Wiskott-Aldrich syndrome treated by hematopoietic cell transplantation in the period 1980–2009: an international collaborative study. Blood. 2011;118(6):1675–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  365. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Díez IA, Dewey RA, et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med. 2010;363(20):1918–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  366. Cattoglio C, Pellin D, Rizzi E, Maruggi G, Corti G, Miselli F, et al. High-definition mapping of retroviral integration sites identifies active regulatory elements in human multipotent hematopoietic progenitors. Blood. 2010;116(25):5507–17.

    CAS  PubMed  Google Scholar 

  367. Modlich U, Navarro S, Zychlinski D, Maetzig T, Knoess S, Brugman MH, et al. Insertional transformation of hematopoietic cells by self-inactivating lentiviral and gammaretroviral vectors. Mol Ther. 2009;17(11):1919–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  368. Galy A, Thrasher AJ. Gene therapy for the Wiskott-Aldrich syndrome. Curr Opin Allergy Clin Immunol. 2011;11(6):545–50.

    CAS  PubMed  Google Scholar 

  369. Avedillo Díez I, Zychlinski D, Coci EG, Galla M, Modlich U, Dewey RA, et al. Development of novel efficient SIN vectors with improved safety features for Wiskott-Aldrich syndrome stem cell based gene therapy. Mol Pharm. 2011;8(5):1525–37.

    PubMed  Google Scholar 

  370. Shaffer LG, Lupski JR. Molecular mechanisms for constitutional chromosomal rearrangements in humans. Annu Rev Genet. 2000;34:297–329.

    CAS  PubMed  Google Scholar 

  371. McDonald-McGinn DM, Tonnesen MK, Laufer-Cahana A, Finucane B, Driscoll DA, Emanuel BS, et al. Phenotype of the 22q11.2 deletion in individuals identified through an affected relative: cast a wide FISHing net! Genet Med. 2001;3(1):23–9.

    CAS  PubMed  Google Scholar 

  372. Kobrynski LJ, Sullivan KE. Velocardiofacial syndrome, DiGeorge syndrome: the chromosome 22q11.2 deletion syndromes. Lancet. 2007;370(9596):1443–52.

    CAS  PubMed  Google Scholar 

  373. Peyvandi S, Lupo PJ, Garbarini J, Woyciechowski S, Edman S, Emanuel BS, et al. 22q11.2 deletions in patients with conotruncal defects: data from 1610 consecutive cases. Pediatr Cardiol. 2013.

    Google Scholar 

  374. McDonald-McGinn DM, Sullivan KE. Chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Medicine (Baltimore). 2011;90(1):1–18.

    Google Scholar 

  375. Staple L, Andrews T, McDonald-McGinn D, Zackai E, Sullivan KE. Allergies in patients with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome) and patients with chronic granulomatous disease. Pediatr Allergy Immunol. 2005;16(3):226–30.

    PubMed  Google Scholar 

  376. Jawad AF, McDonald-Mcginn DM, Zackai E, Sullivan KE. Immunologic features of chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). J Pediatr. 2001;139(5):715–23.

    CAS  PubMed  Google Scholar 

  377. Jawad AF, Prak EL, Boyer J, McDonald-McGinn DM, Zackai E, McDonald K, et al. A prospective study of influenza vaccination and a comparison of immunologic parameters in children and adults with chromosome 22q11.2 deletion syndrome (digeorge syndrome/velocardiofacial syndrome). J Clin Immunol. 2011;31(6):927–35.

    CAS  PubMed  Google Scholar 

  378. Chinen J, Rosenblatt HM, Smith EO, Shearer WT, Noroski LM. Long-term assessment of T-cell populations in DiGeorge syndrome. J Allergy Clin Immunol. 2003;111(3):573–9.

    PubMed  Google Scholar 

  379. Zemble R, Luning Prak E, McDonald K, McDonald-McGinn D, Zackai E, Sullivan K. Secondary immunologic consequences in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Clin Immunol. 2010;136(3):409–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  380. Patel K, Akhter J, Kobrynski L, Benjamin Gathmann MA, Gathman B, Davis O, et al. Immunoglobulin deficiencies: the B-lymphocyte side of DiGeorge Syndrome. J Pediatr. 2012;161(5):950–3.

    CAS  PubMed  Google Scholar 

  381. McDonald-McGinn DM, Reilly A, Wallgren-Pettersson C, Hoyme HE, Yang SP, Adam MP, et al. Malignancy in chromosome 22q11.2 deletion syndrome (DiGeorge syndrome/velocardiofacial syndrome). Am J Med Genet A. 2006;140(8):906–9.

    PubMed  Google Scholar 

  382. Ramos JT, López-Laso E, Ruiz-Contreras J, Giancaspro E, Madero S. B cell non-Hodgkin’s lymphoma in a girl with the DiGeorge anomaly. Arch Dis Child. 1999;81(5):444–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  383. Itoh S, Ohno T, Kakizaki S, Ichinohasama R. Epstein-Barr virus-positive T-cell lymphoma cells having chromosome 22q11.2 deletion: an autopsy report of DiGeorge syndrome. Hum Pathol. 2011;42(12):2037–41.

    CAS  PubMed  Google Scholar 

  384. Sato T, Tatsuzawa O, Koike Y, Wada Y, Nagata M, Kobayashi S, et al. B-cell lymphoma associated with DiGeorge syndrome. Eur J Pediatr. 1999;158(7):609.

    CAS  PubMed  Google Scholar 

  385. Pongpruttipan T, Cook JR, Reyes-Mugica M, Spahr JE, Swerdlow SH. Pulmonary extranodal marginal zone lymphoma of mucosa-associated lymphoid tissue associated with granulomatous inflammation in a child with chromosome 22q11.2 deletion syndrome (DiGeorge syndrome). J Pediatr. 2012;161(5):954–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  386. Asamoto H, Furuta M. Di George syndrome associated with glioma and two kinds of viral infection. N Engl J Med. 1977;296(21):1235.

    CAS  PubMed  Google Scholar 

  387. Tewfik HH, Ptacek JJ, Krause CJ, Latourette HB. DiGeorge syndrome associated with multiple squamous cell carcinomas. Arch Otolaryngol. 1977;103(2):105–7.

    CAS  PubMed  Google Scholar 

  388. Patrone PM, Chatten J, Weinberg P. Neuroblastoma and DiGeorge anomaly. Pediatr Pathol. 1990;10(3):425–30.

    CAS  PubMed  Google Scholar 

  389. Scattone A, Caruso G, Marzullo A, Piscitelli D, Gentile M, Bonadonna L, et al. Neoplastic disease and deletion 22q11.2: a multicentric study and report of two cases. Pediatr Pathol Mol Med. 2003;22(4):323–41.

    CAS  PubMed  Google Scholar 

  390. Ozbek N, Derbent M, Olcay L, Yilmaz Z, Tokel K. Dysplastic changes in the peripheral blood of children with microdeletion 22q11.2. Am J Hematol. 2004;77(2):126–31.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nima Rezaei MD, MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hedayat, M., Al-Herz, W., Aghamohammadi, A., Nichols, K.E., Rezaei, N. (2015). Primary Immunodeficiencies and Cancers. In: Rezaei, N. (eds) Cancer Immunology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44006-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-44006-3_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-44005-6

  • Online ISBN: 978-3-662-44006-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics