Skip to main content

Molecular Diagnosis of Ocular Infections

  • Chapter
  • First Online:
Ocular Infections

Part of the book series: Essentials in Ophthalmology ((ESSENTIALS))

  • 1314 Accesses

Abstract

Molecular analysis of ocular fluids and biopsies has taken a prominent position in the diagnosis of ocular infections. Currently real-time PCR is the mostly applied assay worldwide. In particular for viruses and fastidious microorganisms, PCR has replaced culture since PCR is faster and more sensitive. PCR has been used for the diagnosis of trachoma, herpes virus keratitis, and infectious uveitis for a long time and is not only applied for the detection of the infectious agent but also to monitor the effect of treatment. The application of molecular tools for the diagnosis of bacterial and fungal keratitis and endophthalmitis is taking a flight. Panbacterial and panfungal PCR assays not only allow for fast detection of a microorganism but can be combined with subsequent species and strain identification and antibiotic resistance profiling. However, most current molecular tools are expensive and require costly well-equipped laboratories. Therefore, inexpensive and point-of-care molecular detection assays are being developed. PCR analysis and other molecular diagnostic tools have their limitations. False-negative results may occur due to the absence of the infectious agent in the analyzed sample which may be related to the type of sample analyzed, to the time of sampling in the course of disease, or merely to the nature of the ocular infection. False-positive outcomes may occur due to contamination or bystander effects, resulting from the ever-increasing sensitivities of the molecular assays. When using molecular diagnostic tools, one should be aware of their limitations and consider other diagnostic tools as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell SM, Fox JD, Tedder RS, Gazzard BG, Lightman S. Vitreous fluid sampling and viral genome detection for the diagnosis of viral retinitis in patients with AIDS. J Med Virol. 1994;43(4):336–40.

    CAS  PubMed  Google Scholar 

  2. Westeneng AC, Rothova A, de Boer JH, de Groot-Mijnes JDF. Infectious uveitis in immunocompromised patients and the diagnostic value of polymerase chain reaction and Goldmann-Witmer coefficient in aqueous analysis. Am J Ophthalmol. 2007;144(5):781–5.

    PubMed  Google Scholar 

  3. Bodaghi B, LeHoang P. Testing ocular fluids in uveitis. Ophthalmol Clin North Am. 2002;15(3):271–9.

    PubMed  Google Scholar 

  4. de Boer JH, Verhagen C, Bruinenberg M, Rothova A, de Jong PT, Baarsma GS, et al. Serologic and polymerase chain reaction analysis of intraocular fluids in the diagnosis of infectious uveitis. Am J Ophthalmol. 1996;121(6):650–8.

    PubMed  Google Scholar 

  5. Thomas PA, Kaliamurthy J. Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect. 2013;19(3):210–20.

    CAS  PubMed  Google Scholar 

  6. Liu S, Pavan-Langston D, Colby KA. Pediatric herpes simplex of the anterior segment: characteristics, treatment, and outcomes. Ophthalmology. 2012;119(10):2003–8.

    PubMed  Google Scholar 

  7. Revere K, Davidson SL. Update on management of herpes keratitis in children. Curr Opin Ophthalmol. 2013;24(4):343–7.

    PubMed  Google Scholar 

  8. Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, et al. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science. 1988;239(4839):487–91.

    CAS  PubMed  Google Scholar 

  9. Mackay IM, Arden KE, Nitsche A. Real-time PCR in virology. Nucleic Acids Res. 2002;30(6):1292–305.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Niesters HG. Clinical virology in real time. J Clin Virol. 2002;25 Suppl 3:S3–12.

    CAS  PubMed  Google Scholar 

  11. Dimmock JN, Easton AJ, Leppard KN. Some methods for studying animal viruses. In: Introduction to modern virology. 6th ed. Malden: Blackwell Publishing; 2007. p. 18–29.

    Google Scholar 

  12. Persing DH. In vitro nucleic acid amplification techniques. In: Persing DH, Smith TF, Tenover TJ, White TJ, editors. Diagnostic molecular microbiology, principles and applications. Rochester: Mayo Foundation; 1993. p. 51–87.

    Google Scholar 

  13. De Groot-Mijnes JDF, Rothova A, Van Loon AM, Schuller M, Ten Dam-Van Loon NH, De Boer JH, et al. Polymerase chain reaction and Goldmann-Witmer coefficient analysis are complimentary for the diagnosis of infectious uveitis. Am J Ophthalmol. 2006;141(2):313–8.

    PubMed  Google Scholar 

  14. Espy MJ, Uhl JR, Sloan LM, Buckwalter SP, Jones MF, Vetter EA, et al. Real-time PCR in clinical microbiology: applications for routine laboratory testing. Clin Microbiol Rev. 2006;19(1):165–256.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Costa C, Costa JM, Desterke C, Botterel F, Cordonnier C, Bretagne S. Real-time PCR coupled with automated DNA extraction and detection of galactomannan antigen in serum by enzyme-linked immunosorbent assay for diagnosis of invasive aspergillosis. J Clin Microbiol. 2002;40(6):2224–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Loeffler J, Henke N, Hebart H, Schmidt D, Hagmeyer L, Schumacher U, et al. Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler system. J Clin Microbiol. 2000;38(2):586–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Buchheidt D, Hummel M, Schleiermacher D, Spiess B, Schwerdtfeger R, Cornely OA, et al. Prospective clinical evaluation of a LightCycler-mediated polymerase chain reaction assay, a nested-PCR assay and a galactomannan enzyme-linked immunosorbent assay for detection of invasive aspergillosis in neutropenic cancer patients and haematological stem cell transplant recipients. Br J Haematol. 2004;125(2):196–202.

    CAS  PubMed  Google Scholar 

  18. Spiess B, Buchheidt D, Baust C, Skladny H, Seifarth W, Zeilfelder U, et al. Development of a LightCycler PCR assay for detection and quantification of Aspergillus fumigatus DNA in clinical samples from neutropenic patients. J Clin Microbiol. 2003;41(5):1811–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Matos K, Muccioli C, Belfort Junior R, Rizzo LV. Correlation between clinical diagnosis and PCR analysis of serum, aqueous, and vitreous samples in patients with inflammatory eye disease. Arq Bras Oftalmol. 2007;70(1):109–14.

    PubMed  Google Scholar 

  20. Fox GM, Crouse CA, Chuang EL, Pflugfelder SC, Cleary TJ, Nelson SJ, et al. Detection of herpesvirus DNA in vitreous and aqueous specimens by the polymerase chain reaction. Arch Ophthalmol. 1991;109(2):266–71.

    CAS  PubMed  Google Scholar 

  21. Tran TH, Rozenberg F, Cassoux N, Rao NA, LeHoang P, Bodaghi B. Polymerase chain reaction analysis of aqueous humour samples in necrotising retinitis. Br J Ophthalmol. 2003;87(1):79–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Villard O, Filisetti D, Roch-Deries F, Garweg J, Flament J, Candolfi E. Comparison of enzyme-linked immunosorbent assay, immunoblotting, and PCR for diagnosis of toxoplasmic chorioretinitis. J Clin Microbiol. 2003;41(8):3537–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Brisson-Noel A, Gicquel B, Lecossier D, Levy-Frebault V, Nassif X, Hance AJ. Rapid diagnosis of tuberculosis by amplification of mycobacterial DNA in clinical samples. Lancet. 1989;2(8671):1069–71.

    CAS  PubMed  Google Scholar 

  24. Gupta V, Arora S, Gupta A, Ram J, Bambery P, Sehgal S. Management of presumed intraocular tuberculosis: possible role of the polymerase chain reaction. Acta Ophthalmol Scand. 1998;76(6):679–82.

    CAS  PubMed  Google Scholar 

  25. Hilton E, Smith C, Sood S. Ocular Lyme borreliosis diagnosed by polymerase chain reaction on vitreous fluid. Ann Intern Med. 1996;125(5):424–5.

    CAS  PubMed  Google Scholar 

  26. Mikkila H, Karma A, Viljanen M, Seppala I. The laboratory diagnosis of ocular Lyme borreliosis. Graefes Arch Clin Exp Ophthalmol. 1999;237(3):225–30.

    CAS  PubMed  Google Scholar 

  27. Ortega-Larrocea G, Bobadilla-del-Valle M, Ponce-de-Leon A, Sifuentes-Osornio J. Nested polymerase chain reaction for Mycobacterium tuberculosis DNA detection in aqueous and vitreous of patients with uveitis. Arch Med Res. 2003;34(2):116–9.

    CAS  PubMed  Google Scholar 

  28. Bergmans AM, Groothedde JW, Schellekens JF, van Embden JD, Ossewaarde JM, Schouls LM. Etiology of cat scratch disease: comparison of polymerase chain reaction detection of Bartonella (formerly Rochalimaea) and Afipia felis DNA with serology and skin tests. J Infect Dis. 1995;171(4):916–23.

    CAS  PubMed  Google Scholar 

  29. Drancourt M, Berger P, Terrada C, Bodaghi B, Conrath J, Raoult D, et al. High prevalence of fastidious bacteria in 1520 cases of uveitis of unknown etiology. Medicine (Baltimore). 2008;87(3):167–76.

    Google Scholar 

  30. Müller M, Ewert I, Hansmann F, Tiemann C, Hagedorn HJ, Solbach W, et al. Detection of Treponema pallidum in the vitreous by PCR. Br J Ophthalmol. 2007;91(5):592–5.

    PubMed Central  PubMed  Google Scholar 

  31. Rajan MS, Pantelidis P, Tong CY, French GL, Graham EM, Stanford MR. Diagnosis of Treponema pallidum in vitreous samples using real time polymerase chain reaction. Br J Ophthalmol. 2006;90(5):647–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Carroll NM, Jaeger EE, Choudhury S, Dunlop AA, Matheson MM, Adamson P, et al. Detection of and discrimination between gram-positive and gram-negative bacteria in intraocular samples by using nested PCR. J Clin Microbiol. 2000;38(5):1753–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Higashide T, Takahashi M, Kobayashi A, Ohkubo S, Sakurai M, Shirao Y, et al. Endophthalmitis caused by Enterococcus mundtii. J Clin Microbiol. 2005;43(3):1475–6.

    PubMed Central  PubMed  Google Scholar 

  34. Kerkhoff FT, van der Zee A, Bergmans AM, Rothova A. Polymerase chain reaction detection of Neisseria meningitidis in the intraocular fluid of a patient with endogenous endophthalmitis but without associated meningitis. Ophthalmology. 2003;110(11):2134–6.

    PubMed  Google Scholar 

  35. Okhravi N, Adamson P, Carroll N, Dunlop A, Matheson MM, Towler HM, et al. PCR-based evidence of bacterial involvement in eyes with suspected intraocular infection. Invest Ophthalmol Vis Sci. 2000;41(11):3474–9.

    CAS  PubMed  Google Scholar 

  36. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J Clin Microbiol. 2007;45(9):2761–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  37. Kim E, Chidambaram JD, Srinivasan M, Lalitha P, Wee D, Lietman TM, et al. Prospective comparison of microbial culture and polymerase chain reaction in the diagnosis of corneal ulcer. Am J Ophthalmol. 2008;146(5):714–23. 23 e1.

    CAS  PubMed  Google Scholar 

  38. Ongkosuwito JV, Feron EJ, van Doornik CE, Van der Lelij A, Hoyng CB, La Heij EC, et al. Analysis of immunoregulatory cytokines in ocular fluid samples from patients with uveitis. Invest Ophthalmol Vis Sci. 1998;39(13):2659–65.

    CAS  PubMed  Google Scholar 

  39. de Groot-Mijnes JDF, de Visser L, Zuurveen S, Martinus RA, Volker R, ten Dam-van Loon NH, et al. Identification of new pathogens in the intraocular fluid of patients with uveitis. Am J Ophthalmol. 2010;150(5):628–36.

    PubMed  Google Scholar 

  40. Bijlsma WR, Kalmann R, Dekkers J, Paridaens D, Mourits MP, Kloos R, et al. Identification of infectious entities in idiopathic orbital inflammation biopsies. Br J Ophthalmol. 2013;97(5):664–5.

    PubMed  Google Scholar 

  41. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 2000;28(12):E63.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Kaneko H, Iida T, Aoki K, Ohno S, Suzutani T. Sensitive and rapid detection of herpes simplex virus and varicella-zoster virus DNA by loop-mediated isothermal amplification. J Clin Microbiol. 2005;43(7):3290–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  43. Mohan A, Kiran DH, Manohar IC, Kumar DP. Epidemiology, clinical manifestations, and diagnosis of Chikungunya fever: lessons learned from the re-emerging epidemic. Indian J Dermatol. 2010;55(1):54–63.

    PubMed Central  PubMed  Google Scholar 

  44. Shukla J, Saxena D, Rathinam S, Lalitha P, Joseph CR, Sharma S, et al. Molecular detection and characterization of West Nile virus associated with multifocal retinitis in patients from southern India. Int J Infect Dis. 2012;16(1):e53–9.

    PubMed  Google Scholar 

  45. Iwamoto T, Sonobe T, Hayashi K. Loop-mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium, and M. intracellulare in sputum samples. J Clin Microbiol. 2003;41(6):2616–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Mitarai S, Okumura M, Toyota E, Yoshiyama T, Aono A, Sejimo A, et al. Evaluation of a simple loop-mediated isothermal amplification test kit for the diagnosis of tuberculosis. Int J Tuberc Lung Dis. 2011;15(9):1211–7. i.

    CAS  PubMed  Google Scholar 

  47. Ge Z, Qing Y, Zicheng S, Shiying S. Rapid and sensitive diagnosis of Acanthamoeba keratitis by loop-mediated isothermal amplification. Clin Microbiol Infect. 2013;19:1042–8.

    CAS  PubMed  Google Scholar 

  48. Sakai T, Kohzaki K, Watanabe A, Tsuneoka H, Shimadzu M. Use of DNA microarray analysis in diagnosis of bacterial and fungal endophthalmitis. Clin Ophthalmol. 2013;6:321–6.

    Google Scholar 

  49. Bhosai SJ, Bailey RL, Gaynor BD, Lietman TM. Trachoma: an update on prevention, diagnosis, and treatment. Curr Opin Ophthalmol. 2012;23(4):288–95.

    PubMed  Google Scholar 

  50. Schaeffer A, Henrich B. Rapid detection of Chlamydia trachomatis and typing of the Lymphogranuloma venereum associated L-Serovars by TaqMan PCR. BMC Infect Dis. 2008;8:56.

    PubMed Central  PubMed  Google Scholar 

  51. Mabey D, Solomon AW. Application of molecular tools in the control of blinding trachoma. Am J Trop Med Hyg. 2003;69(5 Suppl):11–7.

    CAS  PubMed  Google Scholar 

  52. Yang JL, Hong KC, Schachter J, Moncada J, Lekew T, House JI, et al. Detection of Chlamydia trachomatis ocular infection in trachoma-endemic communities by rRNA amplification. Invest Ophthalmol Vis Sci. 2009;50(1):90–4.

    PubMed  Google Scholar 

  53. Burton MJ, Holland MJ, Jeffries D, Mabey DC, Bailey RL. Conjunctival chlamydial 16S ribosomal RNA expression in trachoma: is chlamydial metabolic activity required for disease to develop? Clin Infect Dis. 2006;42(4):463–70.

    CAS  PubMed  Google Scholar 

  54. Yang JL, Schachter J, Moncada J, Habte D, Zerihun M, House JI, et al. Comparison of an rRNA-based and DNA-based nucleic acid amplification test for the detection of Chlamydia trachomatis in trachoma. Br J Ophthalmol. 2007;91(3):293–5.

    PubMed Central  PubMed  Google Scholar 

  55. West SK, Munoz B, Mkocha H, Holland MJ, Aguirre A, Solomon AW, et al. Infection with Chlamydia trachomatis after mass treatment of a trachoma hyperendemic community in Tanzania: a longitudinal study. Lancet. 2005;366(9493):1296–300.

    PubMed  Google Scholar 

  56. Burton MJ, Holland MJ, Makalo P, Aryee EA, Alexander ND, Sillah A, et al. Re-emergence of Chlamydia trachomatis infection after mass antibiotic treatment of a trachoma-endemic Gambian community: a longitudinal study. Lancet. 2005;365(9467):1321–8.

    PubMed  Google Scholar 

  57. Karsten E, Watson SL, Foster LJ. Diversity of microbial species implicated in keratitis: a review. Open Ophthalmol J. 2012;6:110–24.

    PubMed Central  PubMed  Google Scholar 

  58. Thompson PP, Kowalski RP. A 13-year retrospective review of polymerase chain reaction testing for infectious agents from ocular samples. Ophthalmology. 2011;118(7):1449–53.

    PubMed  Google Scholar 

  59. Goldschmidt P, Rostane H, Saint-Jean C, Batellier L, Alouch C, Zito E, et al. Effects of topical anaesthetics and fluorescein on the real-time PCR used for the diagnosis of Herpesviruses and Acanthamoeba keratitis. Br J Ophthalmol. 2006;90(11):1354–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Miyakoshi A, Takemoto M, Shiraki K, Hayashi A. Varicella-zoster virus keratitis with asymptomatic conjunctival viral shedding in the contralateral eye. Case Rep Ophthalmol. 2012;3(3):343–8.

    PubMed Central  PubMed  Google Scholar 

  61. Banik U, Adhikary AK, Suzuki E, Inada T, Okabe N. Multiplex PCR assay for rapid identification of oculopathogenic adenoviruses by amplification of the fiber and hexon genes. J Clin Microbiol. 2005;43(3):1064–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Rowe AM, St Leger AJ, Jeon S, Dhaliwal DK, Knickelbein JE, Hendricks RL. Herpes keratitis. Prog Retin Eye Res. 2013;32:88–101.

    CAS  PubMed  Google Scholar 

  63. Hlinomazova Z, Loukotova V, Horackova M, Sery O. The treatment of HSV1 ocular infections using quantitative real-time PCR results. Acta Ophthalmol. 2012;90(5):456–60.

    CAS  PubMed  Google Scholar 

  64. Choong K, Walker NJ, Apel AJ, Whitby M. Aciclovir-resistant herpes keratitis. Clin Experiment Ophthalmol. 2010;38(3):309–13.

    PubMed  Google Scholar 

  65. Turner LD, Beckingsale P. Acyclovir-resistant herpetic keratitis in a solid-organ transplant recipient on systemic immunosuppression. Clin Ophthalmol. 2013;7:229–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Praidou A, Androudi S, Kanonidou E, Konidaris V, Alexandridis A, Brazitikos P. Bilateral herpes simplex keratitis presenting as peripheral ulcerative keratitis. Cornea. 2012;31(5):570–1.

    PubMed  Google Scholar 

  67. Tsagkataki M, Trainor E, Kaye LC, Hopkins MJ, Kaye SB. Adenoviral keratoconjunctivitis associated with stromal oedema and keratic precipitates. Clin Exp Ophthalmol. 2013;41:715–6.

    Google Scholar 

  68. Kakimaru-Hasegawa A, Kuo CH, Komatsu N, Komatsu K, Miyazaki D, Inoue Y. Clinical application of real-time polymerase chain reaction for diagnosis of herpetic diseases of the anterior segment of the eye. Jpn J Ophthalmol. 2008;52(1):24–31.

    PubMed  Google Scholar 

  69. Usui M, Usui N, Goto H, Minoda H, Rai T. Polymerase chain reaction for diagnosis of herpetic intraocular inflammation. Ocul Immunol Inflamm. 1993;1(1–2):105–12.

    CAS  PubMed  Google Scholar 

  70. Hidalgo F, Melon S, de Ona M, Do Santos V, Martinez A, Cimadevilla R, et al. Diagnosis of herpetic keratoconjunctivitis by nested polymerase chain reaction in human tear film. Eur J Clin Microbiol Infect Dis. 1998;17(2):120–3.

    CAS  PubMed  Google Scholar 

  71. Koizumi N, Nishida K, Adachi W, Tei M, Honma Y, Dota A, et al. Detection of herpes simplex virus DNA in atypical epithelial keratitis using polymerase chain reaction. Br J Ophthalmol. 1999;83(8):957–60.

    CAS  PubMed Central  PubMed  Google Scholar 

  72. Kudo E, Shiota H, Kinouchi Y, Mimura Y, Itakura M. Detection of herpes simplex virus DNA in tear fluid of stromal herpetic keratitis patients by nested polymerase chain reaction. Jpn J Ophthalmol. 1996;40(3):390–6.

    CAS  PubMed  Google Scholar 

  73. Tei M, Nishida K, Kinoshita S. Polymerase chain reaction detection of herpes simplex virus in tear fluid from atypical herpetic epithelial keratitis after penetrating keratoplasty. Am J Ophthalmol. 1996;122(5):732–5.

    CAS  PubMed  Google Scholar 

  74. Robert PY, Traccard I, Adenis JP, Denis F, Ranger-Rogez S. Multiplex detection of herpesviruses in tear fluid using the “stair primers” PCR method: prospective study of 93 patients. J Med Virol. 2002;66(4):506–11.

    CAS  PubMed  Google Scholar 

  75. Fukuda M, Deai T, Hibino T, Higaki S, Hayashi K, Shimomura Y. Quantitative analysis of herpes simplex virus genome in tears from patients with herpetic keratitis. Cornea. 2003;22(7 Suppl):S55–60.

    PubMed  Google Scholar 

  76. Khodadoost MA, Sabahi F, Behroz MJ, Roustai MH, Saderi H, Amini-Bavil-Olyaee S, et al. Study of a polymerase chain reaction-based method for detection of herpes simplex virus type 1 DNA among Iranian patients with ocular herpetic keratitis infection. Jpn J Ophthalmol. 2004;48(4):328–32.

    CAS  PubMed  Google Scholar 

  77. Duan R, de Vries RD, Osterhaus AD, Remeijer L, Verjans GM. Acyclovir-resistant corneal HSV-1 isolates from patients with herpetic keratitis. J Infect Dis. 2008;198(5):659–63.

    CAS  PubMed  Google Scholar 

  78. Andrei G, Fiten P, De Clercq E, Snoeck R, Opdenakker G. Evaluating phenotype and genotype of drug-resistant strains in herpesviruses. Mol Biotechnol. 2001;18(2):155–67.

    CAS  PubMed  Google Scholar 

  79. Frobert E, Cortay JC, Ooka T, Najioullah F, Thouvenot D, Lina B, et al. Genotypic detection of acyclovir-resistant HSV-1: characterization of 67 ACV-sensitive and 14 ACV-resistant viruses. Antiviral Res. 2008;79(1):28–36.

    CAS  PubMed  Google Scholar 

  80. Malartre N, Boulieu R, Falah N, Cortay JC, Lina B, Morfin F, et al. Effects of mutations on herpes simplex virus 1 thymidine kinase functionality: an in vitro assay based on detection of monophosphate forms of acyclovir and thymidine using HPLC/DAD. Antiviral Res. 2012;95(3):224–8.

    CAS  PubMed  Google Scholar 

  81. Venard V, Dauendorffer JN, Carret AS, Corsaro D, Edert D, Bordigoni P, et al. Investigation of aciclovir-resistant herpes simplex virus I infection in a bone marrow transplantation unit: genotyping shows that different strains are involved. J Hosp Infect. 2001;47(3):181–7.

    CAS  PubMed  Google Scholar 

  82. Thomas PA, A Teresa P, Theodore J, Geraldine P. PCR for the molecular diagnosis of mycotic keratitis. Expert Rev Mol Diagn. 2012;12(7):703–18.

    PubMed  Google Scholar 

  83. Tabbara KF. Tuberculosis. Curr Opin Ophthalmol. 2007;18(6):493–501.

    PubMed  Google Scholar 

  84. Kuo MT, Chang HC, Cheng CK, Chien CC, Fang PC, Chang TC. A highly sensitive method for molecular diagnosis of fungal keratitis: a dot hybridization assay. Ophthalmology. 2012;119(12):2434–42.

    PubMed  Google Scholar 

  85. Ferrer C, Colom F, Frases S, Mulet E, Abad JL, Alio JL. Detection and identification of fungal pathogens by PCR and by ITS2 and 5.8S ribosomal DNA typing in ocular infections. J Clin Microbiol. 2001;39(8):2873–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Bharathi MJ, Ramakrishnan R, Meenakshi R, Mittal S, Shivakumar C, Srinivasan M. Microbiological diagnosis of infective keratitis: comparative evaluation of direct microscopy and culture results. Br J Ophthalmol. 2006;90(10):1271–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Eleinen KG, Mohalhal AA, Elmekawy HE, Abdulbaki AM, Sherif AM, El-Sherif RH, et al. Polymerase chain reaction-guided diagnosis of infective keratitis – a hospital-based study. Curr Eye Res. 2012;37(11):1005–11.

    PubMed  Google Scholar 

  88. Embong Z, Wan Hitam WH, Yean CY, Rashid NH, Kamarudin B, Abidin SK, et al. Specific detection of fungal pathogens by 18S rRNA gene PCR in microbial keratitis. BMC Ophthalmol. 2008;8:7.

    PubMed Central  PubMed  Google Scholar 

  89. Yang HW, Lee YR, Inoue N, Jha BK, Danne DB, Kim HK, et al. Loop-mediated isothermal amplification targeting 18S ribosomal DNA for rapid detection of Acanthamoeba. Korean J Parasitol. 2013;51(3):269–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Laummaunwai P, Ruangjirachuporn W, Boonmars T. A simple PCR condition for detection of a single cyst of Acanthamoeba species. Parasitol Res. 2012;110(4):1569–72.

    PubMed  Google Scholar 

  91. Safneck JR. Endophthalmitis: a review of recent trends. Saudi J Ophthalmol. 2012;26(2):181–9.

    PubMed Central  PubMed  Google Scholar 

  92. Lohmann CP, Linde HJ, Reischl U. Improved detection of microorganisms by polymerase chain reaction in delayed endophthalmitis after cataract surgery. Ophthalmology. 2000;107(6):1047–51; discussion 51–2.

    CAS  PubMed  Google Scholar 

  93. Okhravi N, Adamson P, Lightman S. Use of PCR in endophthalmitis. Ocul Immunol Inflamm. 2000;8(3):189–200.

    CAS  PubMed  Google Scholar 

  94. Chiquet C, Cornut PL, Benito Y, Thuret G, Maurin M, Lafontaine PO, et al. Eubacterial PCR for bacterial detection and identification in 100 acute postcataract surgery endophthalmitis. Invest Ophthalmol Vis Sci. 2008;49(5):1971–8.

    PubMed  Google Scholar 

  95. Rossney AS, Herra CM, Brennan GI, Morgan PM, O’Connell B. Evaluation of the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay using the GeneXpert real-time PCR platform for rapid detection of MRSA from screening specimens. J Clin Microbiol. 2008;46(10):3285–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Boehme CC, Nabeta P, Hillemann D, Nicol MP, Shenai S, Krapp F, et al. Rapid molecular detection of tuberculosis and rifampin resistance. N Engl J Med. 2010;363(11):1005–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Melo GB, Bispo PJ, Yu MC, Pignatari AC, Hofling-Lima AL. Microbial profile and antibiotic susceptibility of culture-positive bacterial endophthalmitis. Eye (Lond). 2011;25(3):382–7; quiz 8.

    CAS  Google Scholar 

  98. Sugita S, Kamoi K, Ogawa M, Watanabe K, Shimizu N, Mochizuki M. Detection of Candida and Aspergillus species DNA using broad-range real-time PCR for fungal endophthalmitis. Graefes Arch Clin Exp Ophthalmol. 2012;250(3):391–8.

    CAS  PubMed  Google Scholar 

  99. Sugita S, Shimizu N, Watanabe K, Katayama M, Horie S, Ogawa M, et al. Diagnosis of bacterial endophthalmitis by broad-range quantitative PCR. Br J Ophthalmol. 2011;95(3):345–9.

    PubMed  Google Scholar 

  100. Ogawa M, Sugita S, Watanabe K, Shimizu N, Mochizuki M. Novel diagnosis of fungal endophthalmitis by broad-range real-time PCR detection of fungal 28S ribosomal DNA. Graefes Arch Clin Exp Ophthalmol. 2012;250(12):1877–83.

    CAS  PubMed  Google Scholar 

  101. Bharathi MJ, Rameshkumar G, Ramakrishnan R, Venugopal Reddy YC, Shivkumar C, Ramesh S. Comparative evaluation of uniplex, nested, semi-nested, multiplex and nested multiplex PCR methods in the identification of microbial etiology of clinically suspected infectious endophthalmitis. Curr Eye Res. 2013;38(5):550–62.

    CAS  PubMed  Google Scholar 

  102. Cornut PL, el Youssef B, Bron A, Thuret G, Gain P, Burillon C, et al. A multicentre prospective study of post-traumatic endophthalmitis. Acta Ophthalmol. 2013;91(5):475–82.

    PubMed  Google Scholar 

  103. Melo GB, Bispo PJ, Campos Pignatari AC, Hofling-Lima AL. Real-time polymerase chain reaction test to discriminate between contamination and intraocular infection after cataract surgery. J Cataract Refract Surg. 2011;37(7):1244–50.

    PubMed  Google Scholar 

  104. Smith WM, Fahle G, Nussenblatt RB, Sen HN. A rare case of endogenous Aspergillus conicus endophthalmitis in an immunocompromised patient. J Ophthalmic Inflamm Infect. 2013;3(1):37.

    PubMed Central  PubMed  Google Scholar 

  105. Cheung CM, Durrani OM, Murray PI. The safety of anterior chamber paracentesis in patients with uveitis. Br J Ophthalmol. 2004;88(4):582–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Van der Lelij A, Rothova A. Diagnostic anterior chamber paracentesis in uveitis: a safe procedure? Br J Ophthalmol. 1997;81(11):976–9.

    PubMed Central  PubMed  Google Scholar 

  107. Davis JL, Miller DM, Ruiz P. Diagnostic testing of vitrectomy specimens. Am J Ophthalmol. 2005;140(5):822–9.

    PubMed  Google Scholar 

  108. Rothova A, de Boer JH, Ten Dam-van Loon NH, Postma G, de Visser L, Zuurveen SJ, et al. Usefulness of aqueous humor analysis for the diagnosis of posterior uveitis. Ophthalmology. 2008;115(2):306–11.

    PubMed  Google Scholar 

  109. Harper TW, Miller D, Schiffman JC, Davis JL. Polymerase chain reaction analysis of aqueous and vitreous specimens in the diagnosis of posterior segment infectious uveitis. Am J Ophthalmol. 2009;147(1):140–7 e2.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Oahalou A, Schellekens PA, De Groot-Mijnes JD, Rothova A. Diagnostic pars plana vitrectomy and aqueous analyses in patients with uveitis of unknown cause. Retina. 2014;34:108–14.

    PubMed  Google Scholar 

  111. Gargiulo F, De Francesco MA, Nascimbeni G, Turano R, Perandin F, Gandolfo E, et al. Polymerase chain reaction as a rapid diagnostic tool for therapy of acute retinal necrosis syndrome. J Med Virol. 2003;69(3):397–400.

    CAS  PubMed  Google Scholar 

  112. Sugita S, Shimizu N, Watanabe K, Mizukami M, Morio T, Sugamoto Y, et al. Use of multiplex PCR and real-time PCR to detect human herpes virus genome in ocular fluids of patients with uveitis. Br J Ophthalmol. 2008;92(7):928–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Goldmann H, Witmer R. Antikörper im Kammerwasser. Ophthalmologica. 1954;127(4–5):323–30.

    CAS  PubMed  Google Scholar 

  114. Desmonts G. Definitive serological diagnosis of ocular toxoplasmosis. Arch Ophthalmol. 1966;76(6):839–51.

    CAS  PubMed  Google Scholar 

  115. Dussaix E, Cerqueti PM, Pontet F, Bloch-Michel E. New approaches to the detection of locally produced antiviral antibodies in the aqueous of patients with endogenous uveitis. Ophthalmologica. 1987;194(2–3):145–9.

    CAS  PubMed  Google Scholar 

  116. Garweg JG, Jacquier P, Boehnke M. Early aqueous humor analysis in patients with human ocular toxoplasmosis. J Clin Microbiol. 2000;38(3):996–1001.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Quentin CD, Reiber H. Fuchs heterochromic cyclitis: rubella virus antibodies and genome in aqueous humor. Am J Ophthalmol. 2004;138(1):46–54.

    PubMed  Google Scholar 

  118. Errera MH, Goldschmidt P, Batellier L, Degorge S, Heron E, Laroche L, et al. Findings in detection of Herpesviridae by polymerase chain reaction and intraocular antibody production in a case series of anterior uveitis. Ocul Immunol Inflamm. 2013;21(1):61–8.

    PubMed  Google Scholar 

  119. Errera MH, Goldschmidt P, Batellier L, Degorge S, Heron E, Laroche L, et al. Real-time polymerase chain reaction and intraocular antibody production for the diagnosis of viral versus toxoplasmic infectious posterior uveitis. Graefes Arch Clin Exp Ophthalmol. 2011;249(12):1837–46.

    PubMed  Google Scholar 

  120. Khairallah M, Chee SP, Rathinam SR, Attia S, Nadella V. Novel infectious agents causing uveitis. Int Ophthalmol. 2010;30(5):465–83.

    PubMed  Google Scholar 

  121. Khairallah M, Kahloun R, Ben Yahia S, Jelliti B, Messaoud R. New infectious etiologies for posterior uveitis. Ophthalmic Res. 2013;49(2):66–72.

    PubMed  Google Scholar 

  122. Bodaghi B, Rozenberg F, Cassoux N, Fardeau C, LeHoang P. Nonnecrotizing herpetic retinopathies masquerading as severe posterior uveitis. Ophthalmology. 2003;110(9):1737–43.

    PubMed  Google Scholar 

  123. Chee SP, Jap A. Presumed fuchs heterochromic iridocyclitis and Posner-Schlossman syndrome: comparison of cytomegalovirus-positive and negative eyes. Am J Ophthalmol. 2008;146(6):883–9 e1.

    PubMed  Google Scholar 

  124. de Schryver I, Rozenberg F, Cassoux N, Michelson S, Kestelyn P, Lehoang P, et al. Diagnosis and treatment of cytomegalovirus iridocyclitis without retinal necrosis. Br J Ophthalmol. 2006;90(7):852–5.

    PubMed Central  PubMed  Google Scholar 

  125. Markomichelakis NN, Canakis C, Zafirakis P, Marakis T, Mallias I, Theodossiadis G. Cytomegalovirus as a cause of anterior uveitis with sectoral iris atrophy. Ophthalmology. 2002;109(5):879–82.

    PubMed  Google Scholar 

  126. van Boxtel LA, van der Lelij A, van der Meer J, Los LI. Cytomegalovirus as a cause of anterior uveitis in immunocompetent patients. Ophthalmology. 2007;114(7):1358–62.

    PubMed  Google Scholar 

  127. Van der Lelij A, Ooijman FM, Kijlstra A, Rothova A. Anterior uveitis with sectoral iris atrophy in the absence of keratitis: a distinct clinical entity among herpetic eye diseases. Ophthalmology. 2000;107(6):1164–70.

    PubMed  Google Scholar 

  128. Wensing B, de Groot-Mijnes JDF, Rothova A. Necrotizing and nonnecrotizing variants of herpetic uveitis with posterior segment involvement. Arch Ophthalmol. 2011;129(4):403–8.

    PubMed  Google Scholar 

  129. Gaynor BD, Margolis TP, Cunningham Jr ET. Advances in diagnosis and management of herpetic uveitis. Int Ophthalmol Clin. 2000;40(2):85–109.

    CAS  PubMed  Google Scholar 

  130. Kramer MA, Uitenbroek DG, Ujcic-Voortman JK, Pfrommer C, Spaargaren J, Coutinho RA, et al. Ethnic differences in HSV1 and HSV2 seroprevalence in Amsterdam, the Netherlands. Euro Surveill. 2008;13(24):1–5.

    Google Scholar 

  131. McCrary ML, Severson J, Tyring SK. Varicella zoster virus. J Am Acad Dermatol. 1999;41(1):1–14.

    CAS  PubMed  Google Scholar 

  132. Wharton M. The epidemiology of varicella-zoster virus infections. Infect Dis Clin North Am. 1996;10(3):571–81.

    CAS  PubMed  Google Scholar 

  133. Staras SA, Dollard SC, Radford KW, Flanders WD, Pass RF, Cannon MJ. Seroprevalence of cytomegalovirus infection in the United States, 1988–1994. Clin Infect Dis. 2006;43(9):1143–51.

    PubMed  Google Scholar 

  134. Doornenbal P, Seerp Baarsma G, Quint WG, Kijlstra A, Rothbarth PH, Niesters HG. Diagnostic assays in cytomegalovirus retinitis: detection of herpesvirus by simultaneous application of the polymerase chain reaction and local antibody analysis on ocular fluid. Br J Ophthalmol. 1996;80(3):235–40.

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Knox CM, Chandler D, Short GA, Margolis TP. Polymerase chain reaction-based assays of vitreous samples for the diagnosis of viral retinitis. Use in diagnostic dilemmas. Ophthalmology. 1998;105(1):37–44.

    CAS  PubMed  Google Scholar 

  136. Yamamoto S, Pavan-Langston D, Kinoshita S, Nishida K, Shimomura Y, Tano Y. Detecting herpesvirus DNA in uveitis using the polymerase chain reaction. Br J Ophthalmol. 1996;80(5):465–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  137. Silverstein BE, Conrad D, Margolis TP, Wong IG. Cytomegalovirus-associated acute retinal necrosis syndrome. Am J Ophthalmol. 1997;123(2):257–8.

    CAS  PubMed  Google Scholar 

  138. Heiligenhaus A, Helbig H, Fiedler M. Herpesviruses. In: Foster CS, Vitale AT, editors. Diagnosis and treatment of uveitis. Philadelphia: W.B. Saunders Company; 2002. p. 315–32.

    Google Scholar 

  139. Sobrin L, Foster CS. Cytomegalovirus retinitis after one decade of HAART. Int Ophthalmol Clin. 2007;47(2):155–64.

    PubMed  Google Scholar 

  140. Goldberg DE, Smithen LM, Angelilli A, Freeman WR. HIV-associated retinopathy in the HAART era. Retina. 2005;25(5):633–49.

    PubMed  Google Scholar 

  141. Fenner TE, Garweg J, Hufert FT, Boehnke M, Schmitz H. Diagnosis of human cytomegalovirus-induced retinitis in human immunodeficiency virus type 1-infected subjects by using the polymerase chain reaction. J Clin Microbiol. 1991;29(11):2621–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Schacher S, Garweg JG, Russ C, Bohnke M. Die Diagnostik der herpetischen Uveitis und Keratouveitis. Klin Monatsbl Augenheilkd. 1998;212(5):359–62.

    CAS  PubMed  Google Scholar 

  143. Siverio Junior CD, Imai Y, Cunningham Jr ET. Diagnosis and management of herpetic anterior uveitis. Int Ophthalmol Clin. 2002;42(1):43–8.

    PubMed  Google Scholar 

  144. Miyanaga M, Sugita S, Shimizu N, Morio T, Miyata K, Maruyama K, et al. A significant association of viral loads with corneal endothelial cell damage in cytomegalovirus anterior uveitis. Br J Ophthalmol. 2010;94(3):336–40.

    PubMed  Google Scholar 

  145. Chee SP, Bacsal K, Jap A, Se-Thoe SY, Cheng CL, Tan BH. Clinical features of cytomegalovirus anterior uveitis in immunocompetent patients. Am J Ophthalmol. 2008;145(5):834–40.

    PubMed  Google Scholar 

  146. Wensing B, Relvas LM, Caspers LE, Valentincic NV, Stunf S, de Groot-Mijnes JD, et al. Comparison of rubella virus- and herpes virus-associated anterior uveitis: clinical manifestations and visual prognosis. Ophthalmology. 2011;118(10):1905–10.

    PubMed  Google Scholar 

  147. Kongyai N, Sirirungsi W, Pathanapitoon K, Tananuvat N, Kunavisarut P, Leechanachai P, et al. Viral causes of unexplained anterior uveitis in Thailand. Eye (Lond). 2012;26(4):529–34.

    CAS  Google Scholar 

  148. Asano S, Yoshikawa T, Kimura H, Enomoto Y, Ohashi M, Terasaki H, et al. Monitoring herpesvirus DNA in three cases of acute retinal necrosis by real-time PCR. J Clin Virol. 2004;29(3):206–9.

    CAS  PubMed  Google Scholar 

  149. Cottet L, Kaiser L, Hirsch HH, Baglivo E. HSV2 acute retinal necrosis: diagnosis and monitoring with quantitative polymerase chain reaction. Int Ophthalmol. 2009;29(3):199–201.

    CAS  PubMed  Google Scholar 

  150. Yin PD, Kurup SK, Fischer SH, Rhee HH, Byrnes GA, Levy-Clarke GA, et al. Progressive outer retinal necrosis in the era of highly active antiretroviral therapy: successful management with intravitreal injections and monitoring with quantitative PCR. J Clin Virol. 2007;38(3):254–9.

    CAS  PubMed  Google Scholar 

  151. van Velzen M, Missotten T, van Loenen FB, Meesters RJ, Luider TM, Baarsma GS, et al. Acyclovir-resistant herpes simplex virus type 1 in intra-ocular fluid samples of herpetic uveitis patients. J Clin Virol. 2013;57(3):215–21.

    PubMed  Google Scholar 

  152. de Groot-Mijnes JDF, de Visser L, Rothova A, Schuller M, van Loon AM, Weersink AJ. Rubella virus is associated with fuchs heterochromic iridocyclitis. Am J Ophthalmol. 2006;141(1):212–4.

    PubMed  Google Scholar 

  153. Ruokonen PC, Metzner S, Ucer A, Torun N, Hofmann J, Pleyer U. Intraocular antibody synthesis against rubella virus and other microorganisms in Fuchs’ heterochromic cyclitis. Graefes Arch Clin Exp Ophthalmol. 2009;248(4):565–71.

    Google Scholar 

  154. Suzuki J, Goto H, Komase K, Abo H, Fujii K, Otsuki N, et al. Rubella virus as a possible etiological agent of Fuchs heterochromic iridocyclitis. Graefes Arch Clin Exp Ophthalmol. 2010;248(10):1487–91.

    PubMed  Google Scholar 

  155. Birnbaum AD, Tessler HH, Schultz KL, Farber MD, Gao W, Lin P, et al. Epidemiologic relationship between fuchs heterochromic iridocyclitis and the United States rubella vaccination program. Am J Ophthalmol. 2007;144(3):424–8.

    PubMed  Google Scholar 

  156. de Visser L, Braakenburg A, Rothova A, de Boer JH. Rubella virus-associated uveitis: clinical manifestations and visual prognosis. Am J Ophthalmol. 2008;146(2):292–7.

    PubMed  Google Scholar 

  157. de Melker HE, van den Hof S, Berbers GA, Conyn-van Spaendonck MA. Evaluation of the national immunisation programme in the Netherlands: immunity to diphtheria, tetanus, poliomyelitis, measles, mumps, rubella and Haemophilus influenzae type b. Vaccine. 2003;21(7–8):716–20.

    PubMed  Google Scholar 

  158. Rothova A. The riddle of fuchs heterochromic uveitis. Am J Ophthalmol. 2007;144(3):447–8.

    PubMed  Google Scholar 

  159. Mahendradas P, Shetty R, Malathi J, Madhavan HN. Chikungunya virus iridocyclitis in Fuchs’ heterochromic iridocyclitis. Indian J Ophthalmol. 2010;58(6):545–7.

    PubMed Central  PubMed  Google Scholar 

  160. Babu K, Murthy GJ. Chikungunya virus iridocyclitis in Fuchs’ heterochromic iridocyclitis. Indian J Ophthalmol. 2012;60(1):73–4.

    PubMed Central  PubMed  Google Scholar 

  161. Rothova A, Schneider M, de Groot-Mijnes JDF. Human immunodeficiency virus-induced uveitis: intraocular and plasma human immunodeficiency virus-1 RNA loads. Ophthalmology. 2008;115(11):2062–4.

    PubMed  Google Scholar 

  162. Sugita S, Shimizu N, Kawaguchi T, Akao N, Morio T, Mochizuki M. Identification of human herpesvirus 6 in a patient with severe unilateral panuveitis. Arch Ophthalmol. 2007;125(10):1426–7.

    PubMed  Google Scholar 

  163. Ongkosuwito JV, Van der Lelij A, Bruinenberg M, Wienesen-van Doorn M, Feron EJ, Hoyng CB, et al. Increased presence of Epstein-Barr virus DNA in ocular fluid samples from HIV negative immunocompromised patients with uveitis. Br J Ophthalmol. 1998;82(3):245–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Yamamoto S, Sugita S, Sugamoto Y, Shimizu N, Morio T, Mochizuki M. Quantitative PCR for the detection of genomic DNA of Epstein-Barr virus in ocular fluids of patients with uveitis. Jpn J Ophthalmol. 2008;52(6):463–7.

    CAS  PubMed  Google Scholar 

  165. Holland GN. Ocular toxoplasmosis: a global reassessment. J Ophthalmol. 2003;136(6):973–88.

    Google Scholar 

  166. Antoniazzi E, Guagliano R, Meroni V, Pezzotta S, Bianchi PE. Ocular impairment of toxoplasmosis. Parassitologia. 2008;50(1–2):35–6.

    CAS  PubMed  Google Scholar 

  167. Holland GN. Ocular toxoplasmosis: a global reassessment. Part II: disease manifestations and management. Am J Ophthalmol. 2004;137(1):1–17.

    PubMed  Google Scholar 

  168. Pereira Da Mata A, Oréfice F. Toxoplasmosis. In: Foster CS, Vitale AT, editors. Diagnosis and treatment of uveitis. Philadelphia: W.B. Saunders Company; 2002. p. 385–410.

    Google Scholar 

  169. Nussenblatt RB. Ocular toxoplasmosis. In: Nussenblatt RB, Whitcup SM, editors. Uveitis. Fundamentals and clinical practice. 3rd ed. Philadelphia: Mosby; 2004. p. 214–34.

    Google Scholar 

  170. Cano-Parra JL, Diaz LML, Cordoba JL, Gobernado ML, Navea AL, Menezo JL. Acute iridocyclitis in a patient with AIDS diagnosed as toxoplasmosis by PCR. Ocul Immunol Inflamm. 2000;8(2):127–30.

    CAS  PubMed  Google Scholar 

  171. Holland GN. Ocular toxoplasmosis in the immunocompromised host. Int Ophthalmol. 1989;13(6):399–402.

    CAS  PubMed  Google Scholar 

  172. Rehder JR, Burnier Jr MB, Pavesio CE, Kim MK, Rigueiro M, Petrilli AM, et al. Acute unilateral toxoplasmic iridocyclitis in an AIDS patient. Am J Ophthalmol. 1988;106(6):740–1.

    CAS  PubMed  Google Scholar 

  173. Balansard B, Bodaghi B, Cassoux N, Fardeau C, Romand S, Rozenberg F, et al. Necrotising retinopathies simulating acute retinal necrosis syndrome. Br J Ophthalmol. 2005;89(1):96–101.

    CAS  PubMed Central  PubMed  Google Scholar 

  174. Ongkosuwito JV, Bosch-Driessen EH, Kijlstra A, Rothova A. Serologic evaluation of patients with primary and recurrent ocular toxoplasmosis for evidence of recent infection. Am J Ophthalmol. 1999;128(4):407–12.

    CAS  PubMed  Google Scholar 

  175. Garweg JG, de Groot-Mijnes JD, Montoya JG. Diagnostic approach to ocular toxoplasmosis. Ocul Immunol Inflamm. 2011;19(4):255–61.

    PubMed Central  PubMed  Google Scholar 

  176. Fekkar A, Bodaghi B, Touafek F, Le Hoang P, Mazier D, Paris L. Comparison of immunoblotting, calculation of the Goldmann-Witmer coefficient, and real-time PCR using aqueous humor samples for diagnosis of ocular toxoplasmosis. J Clin Microbiol. 2008;46(6):1965–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  177. Aouizerate F, Cazenave J, Poirier L, Verin P, Cheyrou A, Begueret J, et al. Detection of Toxoplasma gondii in aqueous humour by the polymerase chain reaction. Br J Ophthalmol. 1993;77(2):107–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  178. Fardeau C, Romand S, Rao NA, Cassoux N, Bettembourg O, Thulliez P, et al. Diagnosis of toxoplasmic retinochoroiditis with atypical clinical features. Am J Ophthalmol. 2002;134(2):196–203.

    PubMed  Google Scholar 

  179. Bowyer JD, Gormley PD, Seth R, Downes RN, Lowe J. Choroidal tuberculosis diagnosed by polymerase chain reaction. A clinicopathologic case report. Ophthalmology. 1999;106(2):290–4.

    CAS  PubMed  Google Scholar 

  180. Gupta V, Gupta A, Arora S, Bambery P, Dogra MR, Agarwal A. Presumed tubercular serpiginouslike choroiditis: clinical presentations and management. Ophthalmology. 2003;110(9):1744–9.

    PubMed  Google Scholar 

  181. Touitou V, Fenollar F, Cassoux N, Merle-Beral H, LeHoang P, Amoura Z, et al. Ocular Whipple’s disease: therapeutic strategy and long-term follow-up. Ophthalmology. 2012;119(7):1465–9.

    PubMed  Google Scholar 

  182. Kerkhoff FT, Bergmans AM, van Der Zee A, Rothova A. Demonstration of Bartonella grahamii DNA in ocular fluids of a patient with neuroretinitis. J Clin Microbiol. 1999;37(12):4034–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Sugita S, Ogawa M, Shimizu N, Morio T, Ohguro N, Nakai K, et al. Use of a comprehensive polymerase chain reaction system for diagnosis of ocular infectious diseases. Ophthalmology. 2013;120(9):1761–8.

    PubMed  Google Scholar 

  184. Gupta V, Gupta A, Rao NA. Intraocular tuberculosis – an update. Surv Ophthalmol. 2007;52(6):561–87.

    PubMed  Google Scholar 

  185. Bodaghi B, LeHoang P. Ocular tuberculosis. Curr Opin Ophthalmol. 2000;11(6):443–8.

    CAS  PubMed  Google Scholar 

  186. Yeh S, Sen HN, Colyer M, Zapor M, Wroblewski K. Update on ocular tuberculosis. Curr Opin Ophthalmol. 2012;23(6):551–6.

    PubMed  Google Scholar 

  187. Nienhaus A, Schablon A, Diel R. Interferon-gamma release assay for the diagnosis of latent TB infection – analysis of discordant results, when compared to the tuberculin skin test. PLoS One. 2008;3(7):e2665.

    PubMed Central  PubMed  Google Scholar 

  188. Andersen P, Munk ME, Pollock JM, Doherty TM. Specific immune-based diagnosis of tuberculosis. Lancet. 2000;356(9235):1099–104.

    CAS  PubMed  Google Scholar 

  189. Kurup SK, Buggage RR, Clarke GL, Ursea R, Lim WK, Nussenblatt RB. Gamma interferon assay as an alternative to PPD skin testing in selected patients with granulomatous intraocular inflammatory disease. Can J Ophthalmol. 2006;41(6):737–40.

    PubMed  Google Scholar 

  190. Mackensen F, Becker MD, Wiehler U, Max R, Dalpke A, Zimmermann S. QuantiFERON TB-Gold – a new test strengthening long-suspected tuberculous involvement in serpiginous-like choroiditis. Am J Ophthalmol. 2008;146(5):761–6.

    PubMed  Google Scholar 

  191. Bramante CT, Talbot EA, Rathinam SR, Stevens R, Zegans ME. Diagnosis of ocular tuberculosis: a role for new testing modalities? Int Ophthalmol Clin. 2007;47(3):45–62.

    PubMed  Google Scholar 

  192. Winqvist N, Bjorkman P, Noren A, Miorner H. Use of a T cell interferon gamma release assay in the investigation for suspected active tuberculosis in a low prevalence area. BMC Infect Dis. 2009;9:105.

    PubMed Central  PubMed  Google Scholar 

  193. Ang M, Htoon HM, Chee SP. Diagnosis of tuberculous uveitis: clinical application of an interferon-gamma release assay. Ophthalmology. 2009;116(7):1391–6.

    PubMed  Google Scholar 

  194. Lütkemeyer AF, Charlebois ED, Flores LL, Bangsberg DR, Deeks SG, Martin JN, et al. Comparison of an interferon-gamma release assay with tuberculin skin testing in HIV-infected individuals. Am J Respir Crit Care Med. 2007;175(7):737–42.

    Google Scholar 

  195. Stephan C, Wolf T, Goetsch U, Bellinger O, Nisius G, Oremek G, et al. Comparing QuantiFERON-tuberculosis gold, T-SPOT tuberculosis and tuberculin skin test in HIV-infected individuals from a low prevalence tuberculosis country. AIDS. 2008;22(18):2471–9.

    PubMed  Google Scholar 

  196. Thompson MJ, Albert DM. Ocular tuberculosis. Arch Ophthalmol. 2005;123(6):844–9.

    PubMed  Google Scholar 

  197. Biswas J, Badrinath SS. Ocular morbidity in patients with active systemic tuberculosis. Int Ophthalmol. 1995;19(5):293–8.

    PubMed  Google Scholar 

  198. Arora SK, Gupta V, Gupta A, Bambery P, Kapoor GS, Sehgal S. Diagnostic efficacy of polymerase chain reaction in granulomatous uveitis. Tuber Lung Dis. 1999;79(4):229–33.

    CAS  PubMed  Google Scholar 

  199. Salman A, Parmar P, Rajamohan M, Thomas PA, Jesudasan N. Subretinal fluid analysis in the diagnosis of choroidal tuberculosis. Retina. 2003;23(6):796–9.

    PubMed  Google Scholar 

  200. Shanmugam M. Subretinal fluid analysis in the diagnosis of choroidal tuberculosis. Retina. 2004;24(4):659.

    PubMed  Google Scholar 

  201. Aldave AJ, King JA, Cunningham Jr ET. Ocular syphilis. Curr Opin Ophthalmol. 2001;12(6):433–41.

    CAS  PubMed  Google Scholar 

  202. Chao JR, Khurana RN, Fawzi AA, Reddy HS, Rao NA. Syphilis: reemergence of an old adversary. Ophthalmology. 2006;113(11):2074–9.

    PubMed  Google Scholar 

  203. Sambri V, Marangoni A, Simone MA, D’Antuono A, Negosanti M, Cevenini R. Evaluation of recomWell Treponema, a novel recombinant antigen-based enzyme-linked immunosorbent assay for the diagnosis of syphilis. Clin Microbiol Infect. 2001;7(4):200–5.

    CAS  PubMed  Google Scholar 

  204. Schmidt BL, Edjlalipour M, Luger A. Comparative evaluation of nine different enzyme-linked immunosorbent assays for determination of antibodies against Treponema pallidum in patients with primary syphilis. J Clin Microbiol. 2000;38(3):1279–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Clyne B, Jerrard DA. Syphilis testing. J Emerg Med. 2000;18(3):361–7.

    CAS  PubMed  Google Scholar 

  206. Luger AF, Schmidt BL, Kaulich M. Significance of laboratory findings for the diagnosis of neurosyphilis. Int J STD AIDS. 2000;11(4):224–34.

    CAS  PubMed  Google Scholar 

  207. Marra CA. Neurosyphilis: a guide for clinicians. Infect Dis Clin Pract. 1996;5:33–41.

    Google Scholar 

  208. Cornut PL, Sobas CR, Perard L, De Bats F, Salord H, Manificat HJ, et al. Detection of Treponema pallidum in aqueous humor by real-time polymerase chain reaction. Ocul Immunol Inflamm. 2011;19(2):127–8.

    PubMed  Google Scholar 

  209. Troutbeck R, Chhabra R, Jones NP. Polymerase chain reaction testing of vitreous in atypical ocular syphilis. Ocul Immunol Inflamm. 2013;21(3):227–30.

    CAS  PubMed  Google Scholar 

  210. Friedman MG. Antibodies in human tears during and after infection. Surv Ophthalmol. 1990;35(2):151–7.

    CAS  PubMed  Google Scholar 

  211. Pramod NP, Dhevahi E, Sudhamathi K, Kannan K, Thyagarajan SP. Tear secretory IgA: evaluation of usefulness as a diagnostic marker in herpetic keratitis. Ocul Immunol Inflamm. 1999;7(2):61–7.

    CAS  PubMed  Google Scholar 

  212. Knox CM, Chandler D, Short GA, Margolis TP. Polymerase chain reaction-based assays of vitreous samples for the diagnosis of viral retinitis. Use in diagnostic dilemmas. Ophthalmology 1998;105:37–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jolanda D. F. de Groot-Mijnes PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

de Groot-Mijnes, J.D.F. (2014). Molecular Diagnosis of Ocular Infections. In: Tabbara, K., El-Asrar, A., Khairallah, M. (eds) Ocular Infections. Essentials in Ophthalmology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43981-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43981-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43980-7

  • Online ISBN: 978-3-662-43981-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics