Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8401))

Abstract

Visual Data Mining (VDM) is supported by interactive and scalable network visualization and analysis, which in turn enables effective exploration and communication of ideas within multiple biological and biomedical fields. Large networks, such as the protein interactome or transcriptional regulatory networks, contain hundreds of thousands of objects and millions of relationships. These networks are continuously evolving as new knowledge becomes available, and their content is richly annotated and can be presented in many different ways. Attempting to discover knowledge and new theories within this complex data sets can involve many workflows, such as accurately representing many formats of source data, merging heterogeneous and distributed data sources, complex database searching, integrating results from multiple computational and mathematical analyses, and effectively visualizing properties and results. Our experience with biology researchers has required us to address their needs and requirements in the design and development of a scalable and interactive network visualization and analysis platform, NAViGaTOR, now in its third major release.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Holzinger, A.: On Knowledge Discovery and Interactive Intelligent Visualization of Biomedical Data - Challenges in Human–Computer Interaction & Biomedical Informatics. In: DATA 2012, Rome, Italy, pp. 9–20. INSTICC (2012)

    Google Scholar 

  2. Holzinger, A.: Weakly Structured Data in Health-Informatics: The Challenge for Human-Computer Interaction. In: Proceedings of INTERACT 2011 Workshop: Promoting and Supporting Healthy Living by Design. IFIP, pp. 5–7 (2011)

    Google Scholar 

  3. Holzinger, A., Stocker, C., Ofner, B., Prohaska, G., Brabenetz, A., Hofmann-Wellenhof, R.: Combining HCI, Natural Language Processing, and Knowledge Discovery - Potential of IBM Content Analytics as an assistive technology in the biomedical domain. In: Holzinger, A., Pasi, G. (eds.) HCI-KDD 2013. LNCS, vol. 7947, pp. 13–24. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Holzinger, A.: Biomedical Informatics: Discovering Knowledge in Big Data. Springer, New York (2014)

    Google Scholar 

  5. Howe, D., Costanzo, M., Fey, P., Gojobori, T., Hannick, L., Hide, W., Hill, D.P., Kania, R., Schaeffer, M., St Pierre, S., Twigger, S., White, O., Rhee, S.Y.: Big data: The future of biocuration. Nature 455(7209), 47–50 (2008)

    Article  Google Scholar 

  6. Holzinger, A., Dehmer, M., Jurisica, I.: Knowledge Discovery and interactive Data Mining in Bioinformatics - State-of-the-Art, future challenges and research directions. BMC Bioinformatics 15(suppl. 6), I1 (2014)

    Google Scholar 

  7. Kreuzthaler, M., Bloice, M.D., Faulstich, L., Simonic, K.M., Holzinger, A.: A Comparison of Different Retrieval Strategies Working on Medical Free Texts. J. Univers. Comput. Sci. 17(7), 1109–1133 (2011)

    Google Scholar 

  8. Wu, X.D., Zhu, X.Q., Wu, G.Q., Ding, W.: Data Mining with Big Data. IEEE Transactions on Knowledge and Data Engineering 26(1), 97–107 (2014)

    Article  Google Scholar 

  9. Huppertz, B., Holzinger, A.: Biobanks – A Source of large Biological Data Sets: Open Problems and Future Challenges. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining: State-of-the-Art and Future Challenges in Biomedical Informatics. LNCS, vol. 8401, pp. 317–330. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Jeanquartier, F., Holzinger, A.: On Visual Analytics And Evaluation In Cell Physiology: A Case Study. In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 495–502. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Keim, D.A.: Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics 8(1), 1–8 (2002)

    Article  MathSciNet  Google Scholar 

  12. Pastrello, C., Otasek, D., Fortney, K., Agapito, G., Cannataro, M., Shirdel, E., Jurisica, I.: Visual Data Mining of Biological Networks: One Size Does Not Fit All. PLoS Computational Biology 9(1), e1002833 (2013)

    Google Scholar 

  13. Cox, K., Eick, S., Wills, G., Brachman, R.: Brief Application Description; Visual Data Mining: Recognizing Telephone Calling Fraud. Data Min. Knowl. Discov. 1(2), 225–231 (1997)

    Article  Google Scholar 

  14. Inselberg, A.: Visual data mining with parallel coordinates. Computational Statistics 13(1), 47–63 (1998)

    MATH  Google Scholar 

  15. Inselberg, A., Dimsdale, B.: Parallel coordinates: A tool for visualizing multi-dimensional geometry, pp. 361–378. IEEE Computer Society Press (1990)

    Google Scholar 

  16. Heinrich, J., Weiskopf, D.: State of the Art of Parallel Coordinates. In: Eurographics 2013-State of the Art Reports, pp. 95–116. The Eurographics Association (2012)

    Google Scholar 

  17. Wong, P.C.: Visual data mining. IEEE Computer Graphics and Applications 19(5), 20–21 (1999)

    Article  Google Scholar 

  18. Hinneburg, A., Keim, D.A., Wawryniuk, M.: HD-eye: Visual mining of high-dimensional data. IEEE Computer Graphics and Applications 19(5), 22–31 (1999)

    Article  Google Scholar 

  19. Keim, D., Müller, W., Schumann, H.: Information Visualization and Visual Data Mining; State of the art report. In: Eurographics (2002)

    Google Scholar 

  20. de Oliveira, M.C.F., Levkowitz, H.: From visual data exploration to visual data mining: A survey. IEEE Transactions on Visualization and Computer Graphics 9(3), 378–394 (2003)

    Article  Google Scholar 

  21. Stahl, F., Gabrys, B., Gaber, M.M., Berendsen, M.: An overview of interactive visual data mining techniques for knowledge discovery. Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery 3(4), 239–256 (2013)

    Article  Google Scholar 

  22. Rosado-Munoz, A., Martinez-Martinez, J.M., Escandell-Montero, P., Soria-Olivas, E.: Visual data mining with self-organising maps for ventricular fibrillation analysis. Computer Methods and Programs in Biomedicine 111(2), 269–279 (2013)

    Article  Google Scholar 

  23. Turkay, C., Jeanquartier, F., Holzinger, A., Hauser, H.: On computationally-enhanced visual analysis of heterogeneous data and its application in biomedical informatics. In: Holzinger, A., Jurisica, I. (eds.) Knowledge Discovery and Data Mining. LNCS, vol. 8401, pp. 117–140. Springer, Heidelberg (2014)

    Google Scholar 

  24. Blandford, A., Attfield, S.: Interacting with Information. Synthesis Lectures on Human-Centered Informatics 3(1), 1–99 (2010)

    Article  Google Scholar 

  25. Holzinger, A., Scherer, R., Seeber, M., Wagner, J., Müller-Putz, G.: Computational Sensemaking on Examples of Knowledge Discovery from Neuroscience Data: Towards Enhancing Stroke Rehabilitation. In: Böhm, C., Khuri, S., Lhotská, L., Renda, M.E. (eds.) ITBAM 2012. LNCS, vol. 7451, pp. 166–168. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  26. Holzinger, A.: Interacting with Information: Challenges in Human-Computer Interaction and Information Retrieval (HCI-IR). In: IADIS Multiconference on Computer Science and Information Systems (MCCSIS), Interfaces and Human-Computer Interaction, pp. 13–17. IADIS, Rome (2011)

    Google Scholar 

  27. Holzinger, A.: Biomedical Informatics: Computational Sciences meets Life Sciences. BoD, Norderstedt (2012)

    Google Scholar 

  28. Strömbäck, L., Lambrix, P.: Representations of molecular pathways: an evaluation of SBML, PSI MI and BioPAX. Bioinformatics 21(24), 4401–4407 (2005)

    Article  Google Scholar 

  29. Lloyd, C.M., Halstead, M.D., Nielsen, P.F.: CellML: Its future, present and past. Progress in biophysics and molecular biology 85(2), 433–450 (2004)

    Article  Google Scholar 

  30. Miller, A.K., Marsh, J., Reeve, A., Garny, A., Britten, R., Halstead, M., Cooper, J., Nickerson, D.P., Nielsen, P.F.: An overview of the CellML API and its implementation. BMC Bioinformatics 11(1), 178 (2010)

    Article  Google Scholar 

  31. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 211–221. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  32. Gajer, P., Kobourov, S.G.: GRIP: Graph dRawing with Intelligent Placement. In: Marks, J. (ed.) GD 2000. LNCS, vol. 1984, pp. 222–228. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  33. http://www.kegg.jp/kegg/xml/

  34. Hermjakob, H., Montecchi-Palazzi, L., Bader, G., Wojcik, J., Salwinski, L., Ceol, A., Moore, S., Orchard, S., Sarkans, U., von Mering, C.: The HUPO PSI’s molecular interaction format—a community standard for the representation of protein interaction data. Nature Biotechnology 22(2), 177–183 (2004)

    Article  Google Scholar 

  35. Kerrien, S., Orchard, S., Montecchi-Palazzi, L., Aranda, B., Quinn, A., Vinod, N., Bader, G., Xenarios, I., Wojcik, J., Sherman, D.: Broadening the horizon–level 2.5 of the HUPO-PSI format for molecular interactions. BMC Biology 5(1), 44 (2007)

    Article  Google Scholar 

  36. Jones, S., Thornton, J.M.: Principles of protein-protein interactions. Proceedings of the National Academy of Sciences 93(1), 13–20 (1996)

    Article  Google Scholar 

  37. Zhang, A.: Protein Interaction Networks: Computational Analysis. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  38. Wiltgen, M., Holzinger, A.: Visualization in Bioinformatics: Protein Structures with Physicochemical and Biological Annotations. In: Zara, J., Sloup, J. (eds.) Central European Multimedia and Virtual Reality Conference (available in EG Eurographics Library), pp. 69–74. Czech Technical University (CTU), Prague (2005)

    Google Scholar 

  39. Wiltgen, M., Holzinger, A., Tilz, G.P.: Interactive Analysis and Visualization of Macromolecular Interfaces Between Proteins. In: Holzinger, A. (ed.) USAB 2007. LNCS, vol. 4799, pp. 199–212. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  40. Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H., Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A.: The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics 19(4), 524–531 (2003)

    Article  Google Scholar 

  41. Wong, B.L.W., Xu, K., Holzinger, A.: Interactive Visualization for Information Analysis in Medical Diagnosis. In: Holzinger, A., Simonic, K.-M. (eds.) USAB 2011. LNCS, vol. 7058, pp. 109–120. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  42. Demir, E., Cary, M.P., Paley, S., Fukuda, K., Lemer, C., Vastrik, I., Wu, G., D’Eustachio, P., Schaefer, C., Luciano, J.: The BioPAX community standard for pathway data sharing. Nature Biotechnology 28(9), 935–942 (2010)

    Article  Google Scholar 

  43. Martinez-Bazan, N., Gomez-Villamor, S., Escale-Claveras, F.: DEX: A high-performance graph database management system. In: IEEE 27th International Conference on Data Engineering (ICDEW), pp. 124–127 (2011)

    Google Scholar 

  44. Brown, K.R., Jurisica, I.: Online predicted human interaction database. Bioinformatics 21(9), 2076–2082 (2005)

    Article  Google Scholar 

  45. Pržulj, N., Wigle, D.A., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)

    Article  Google Scholar 

  46. Ghersi, D., Singh, M.: Disentangling function from topology to infer the network properties of disease genes. BMC Systems Biology 7(1), 1–12 (2013)

    Article  Google Scholar 

  47. Memišević, V., Pržulj, N.: C-GRAAL: Common-neighbors-based global GRAph ALignment of biological networks. Integrative Biology 4(7), 734–743 (2012)

    Article  Google Scholar 

  48. Gajer, P., Kobourov, S.G.: GRIP: Graph drawing with intelligent placement. J. Graph Algorithms Appl. 6(3), 203–224 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  49. Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. Computational Geometry 29(1), 3–18 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ma, K.-L., Muelder, C.W.: Large-Scale Graph Visualization and Analytics. Computer 46(7), 39–46 (2013)

    Article  Google Scholar 

  51. Lissanu Deribe, Y., Wild, P., Chandrashaker, A., Curak, J., Schmidt, M.H., Kalaidzidis, Y., Milutinovic, N., Kratchmarova, I., Buerkle, L., Fetchko, M.J.: Regulation of epidermal growth factor receptor trafficking by lysine deacetylase HDAC6. Science Signaling 2(102), ra84 (2009)

    Google Scholar 

  52. Henderson, B.E., Feigelson, H.S.: Hormonal carcinogenesis. Carcinogenesis 21(3), 427–433 (2000)

    Article  Google Scholar 

  53. Knox, C., Law, V., Jewison, T., Liu, P., Ly, S., Frolkis, A., Pon, A., Banco, K., Mak, C., Neveu, V.: DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Research 39(suppl. 1), D1035–D1041 (2011)

    Google Scholar 

  54. Ma, X., Qi, X., Chen, C., Lin, H., Xiong, H., Li, Y., Jiang, J.: Association between CYP19 polymorphisms and breast cancer risk: Results from 10,592 cases and 11,720 controls. Breast Cancer Research and Treatment 122(2), 495–501 (2010)

    Article  Google Scholar 

  55. Douglas, J.A., Zuhlke, K.A., Beebe-Dimmer, J., Levin, A.M., Gruber, S.B., Wood, D.P., Cooney, K.A.: Identifying susceptibility genes for prostate cancer—a family-based association study of polymorphisms in CYP17, CYP19, CYP11A1, and LH-β. Cancer Epidemiology Biomarkers & Prevention 14(8), 2035–2039 (2005)

    Article  Google Scholar 

  56. Reid, A.H., Attard, G., Barrie, E., de Bono, J.S.: CYP17 inhibition as a hormonal strategy for prostate cancer. Nature Clinical Practice Urology 5(11), 610–620 (2008)

    Article  Google Scholar 

  57. Brana, M., Cacho, M., Gradillas, A., de Pascual-Teresa, B., Ramos, A.: Intercalators as anticancer drugs. Current Pharmaceutical Design 7(17), 1745–1780 (2001)

    Article  Google Scholar 

  58. Masuda, H., Zhang, D., Bartholomeusz, C., Doihara, H., Hortobagyi, G.N., Ueno, N.T.: Role of epidermal growth factor receptor in breast cancer. Breast Cancer Research and Treatment 136(2), 331–345 (2012)

    Article  Google Scholar 

  59. Gelmon, K., Dent, R., Mackey, J., Laing, K., McLeod, D., Verma, S.: Targeting triple-negative breast cancer: Optimising therapeutic outcomes. Annals of Oncology 23(9), 2223–2234 (2012)

    Article  Google Scholar 

  60. Tsao, M.-S., Sakurada, A., Cutz, J.-C., Zhu, C.-Q., Kamel-Reid, S., Squire, J., Lorimer, I., Zhang, T., Liu, N., Daneshmand, M.: Erlotinib in lung cancer—molecular and clinical predictors of outcome. N. Engl. J. Med. 353(2), 133–144 (2005)

    Article  Google Scholar 

  61. Tukey, R.H., Strassburg, C.P.: Human UDP-glucuronosyltransferases: Metabolism, expression, and disease. Annual Review of Pharmacology and Toxicology 40(1), 581–616 (2000)

    Article  Google Scholar 

  62. Haining, R.L., Nichols-Haining, M.: Cytochrome P450-catalyzed pathways in human brain: Metabolism meets pharmacology or old drugs with new mechanism of action? Pharmacology & Therapeutics 113(3), 537–545 (2007)

    Article  Google Scholar 

  63. Kilford, P.J., Stringer, R., Sohal, B., Houston, J.B., Galetin, A.: Prediction of drug clearance by glucuronidation from in vitro data: Use of combined cytochrome P450 and UDP-glucuronosyltransferase cofactors in alamethicin-activated human liver microsomes. Drug Metabolism and Disposition 37(1), 82–89 (2009)

    Article  Google Scholar 

  64. Holzinger, A.: Human–Computer Interaction & Knowledge Discovery (HCI-KDD): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  65. Keim, D.A., Mansmann, F., Schneidewind, J., Thomas, J., Ziegler, H.: Visual Analytics: Scope and Challenges. In: Simoff, S.J., Böhlen, M.H., Mazeika, A. (eds.) Visual Data Mining. LNCS, vol. 4404, pp. 76–90. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  66. Anderson, D., Anderson, E., Lesh, N., Marks, J., Perlin, K., Ratajczak, D., Ryall, K.: Human-guided simple search: Combining information visualization and heuristic search. In: Proceedings of the 1999 Workshop on New Paradigms in Information Visualization and Manipulation in Conjunction with the Eighth ACM Internation Conference on Information and Knowledge Management, pp. 21–25. ACM (1999)

    Google Scholar 

  67. Ng, R.T., Lakshmanan, L.V., Han, J., Pang, A.: Exploratory mining and pruning optimizations of constrained associations rules. In: ACM SIGMOD Record, pp. 13–24. ACM (1998)

    Google Scholar 

  68. Ankerst, M., Ester, M., Kriegel, H.-P.: Towards an effective cooperation of the user and the computer for classification. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 179–188. ACM (2000)

    Google Scholar 

  69. Mueller, H., Reihs, R., Zatloukal, K., Holzinger, A.: Analysis of biomedical data with multilevel glyphs. BMC Bioinformatics 15(suppl. 6), S5 (2014)

    Google Scholar 

  70. Holzinger, A., Leitner, H.: Lessons from Real-Life Usability Engineering in Hospital: From Software Usability to Total Workplace Usability. In: Holzinger, A., Weidmann, K.-H. (eds.) Empowering Software Quality: How can Usability Engineering Reach These Goals?, pp. 153–160. Austrian Computer Society, Vienna (2005)

    Google Scholar 

  71. Holzinger, A., Searle, G., Wernbacher, M.: The effect of Previous Exposure to Technology (PET) on Acceptance and its importance in Usability Engineering. Universal Access in the Information Society International Journal 10(3), 245–260 (2011)

    Article  Google Scholar 

  72. Holzinger, A.: Usability engineering methods for software developers. Communications of the ACM 48(1), 71–74 (2005)

    Article  Google Scholar 

  73. Chawla, N.V., Davis, D.A.: Bringing Big Data to Personalized Healthcare: A Patient-Centered Framework. J. Gen. Intern. Med. 28, S660–S665 (2013)

    Google Scholar 

  74. Wang, D.A., Wang, R., Yan, H.: Fast prediction of protein-protein interaction sites based on Extreme Learning Machines. Neurocomputing 128, 258–266 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Otasek, D., Pastrello, C., Holzinger, A., Jurisica, I. (2014). Visual Data Mining: Effective Exploration of the Biological Universe. In: Holzinger, A., Jurisica, I. (eds) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, vol 8401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43968-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43968-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43967-8

  • Online ISBN: 978-3-662-43968-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics