Skip to main content

Sparse Inverse Covariance Estimation for Graph Representation of Feature Structure

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8401))

Abstract

The access to more information provided by modern high-throughput measurement systems has made it possible to investigate finer details of complex systems. However, it also has increased the number of features, and thereby the dimensionality in data, to be processed in data analysis. Higher dimensionality makes it particularly challenging to understand complex systems, by blowing up the number of possible configurations of features we need to consider. Structure learning with the Gaussian Markov random field can provide a remedy, by identifying conditional independence structure of features in a form that is easy to visualize and understand. The learning is based on a convex optimization problem, called the sparse inverse covariance estimation, for which many efficient algorithms have been developed in the past few years. When dimensions are much larger than sample sizes, structure learning requires to consider statistical stability, in which connections to data mining arise in terms of discovering common or rare subgraphs as patterns. The outcome of structure learning can be visualized as graphs, represented accordingly to additional information if required, providing a perceivable way to investigate complex feature spaces.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grunenwald, H., Baas, B., Caruccio, N., Syed, F.: Rapid, high-throughput library preparation for next-generation sequencing. Nature Methods 7(8) (2010)

    Google Scholar 

  2. Soon, W.W., Hariharan, M., Snyder, M.P.: High-throughput sequencing for biology and medicine. Molecular Systems Biology 9, 640 (2013)

    Article  Google Scholar 

  3. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. Journal of Machine Learning Research 3, 1157–1182 (2003)

    MATH  Google Scholar 

  4. Khatri, P., Draghici, S.: Ontological analysis of gene expression data: Current tools, limitations, and open problems. Bioinformatics 21(18), 3587–3595 (2005)

    Article  Google Scholar 

  5. Altman, T., Travers, M., Kothari, A., Caspi, R., Karp, P.D.: A systematic comparison of the MetaCyc and KEGG pathway databases. BMC Bioinformatics 14(1), 112 (2013)

    Article  Google Scholar 

  6. Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)

    Google Scholar 

  7. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann Publishers Inc. (1988)

    Google Scholar 

  8. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. Journal of Computational Biology: A Journal of Computational Molecular Cell Biology 7(3-4), 601–620 (2000)

    Article  Google Scholar 

  9. Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D.A., Nolan, G.P.: Causal protein-signaling networks derived from multiparameter single-cell data. Science 308(5721), 523–529 (2005)

    Article  Google Scholar 

  10. Jiang, X., Cooper, G.F.: A Bayesian spatio-temporal method for disease outbreak detection. Journal of the American Medical Informatics Association 17(4), 462–471 (2010)

    Article  Google Scholar 

  11. Chickering, D.: Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 445–498 (2002)

    Google Scholar 

  12. Chickering, D., Heckerman, D., Meek, C.: Large- sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research 5, 1287–1330 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Meinshausen, N., Bühlmann, P.: High-dimensional graphs and variable selection with the lasso. Annals of Statistics 34, 1436–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yuan, M., Lin, Y.: Model selection and estimation in the gaussian graphical model. Biometrika 94(1), 19–35 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Banerjee, O., Ghaoui, L.E., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate gaussian or binary data. Journal of Machine Learning Research 9, 485–516 (2008)

    MathSciNet  MATH  Google Scholar 

  16. Duchi, J., Gould, S., Koller, D.: Projected subgradient methods for learning sparse gaussians. In: Conference on Uncertainty in Artificial Intelligence (2008)

    Google Scholar 

  17. Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)

    Article  MATH  Google Scholar 

  18. Meinshausen, N., Bühlmann, P.: Stability selection. Journal of the Royal Statistical Society (Series B) 72(4), 417–473 (2010)

    Article  MathSciNet  Google Scholar 

  19. Scheinberg, K., Ma, S., Goldfarb, D.: Sparse inverse covariance selection via alternating linearization methods. In: Advances in Neural Information Processing Systems 23, pp. 2101–2109. MIT Press (2010)

    Google Scholar 

  20. Johnson, C., Jalali, A., Ravikumar, P.: High-dimensional sparse inverse covariance estimation using greedy methods. In: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics (2012)

    Google Scholar 

  21. Dinh, Q.T., Kyrillidis, A., Cevher, V.: A proximal newton framework for composite minimization: Graph learning without cholesky decompositions and matrix inversions. In: International Conference on Machine Learning (2013)

    Google Scholar 

  22. Dempster, A.P.: Covariance selection. Biometrika 32, 95–108 (1972)

    Google Scholar 

  23. Whittaker, J.: Graphical Models in Applied Multivariate Statistics. Wiley (1990)

    Google Scholar 

  24. Giudici, P., Green, P.J.: Decomposable graphical Gaussian model determination. Biometrika 86(4), 785–801 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Dobra, A., Hans, C., Jones, B., Nevins, J.R., Yao, G., West, M.: Sparse graphical models for exploring gene expression data. Journal of Multivariate Analysis 90(1), 196–212 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Verzelen, N., Villers, F.: Tests for gaussian graphical models. Computational Statistics and Data Analysis 53(5), 1894–1905 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hunt, B.R.: The application of constrained least squares estimation to image restoration by digital computer. IEEE Transactions on Computers C-22(9), 805–812 (1973)

    Article  Google Scholar 

  28. Chellappa, R., Chatterjee, S.: Classification of textures using Gaussian Markov random fields. IEEE Transactions on Acoustics, Speech and Signal Processing 33(4), 959–963 (1985)

    Article  MathSciNet  Google Scholar 

  29. Cross, G.R., Jain, A.K.: Markov random field texture models. IEEE Transactions on Pattern Analysis and Machine Intelligence 5(1), 25–39 (1983)

    Article  Google Scholar 

  30. Manjunath, B.S., Chellappa, R.: Unsupervised texture segmentation using Markov random field models. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(5), 478–482 (1991)

    Article  Google Scholar 

  31. Dryden, I., Ippoliti, L., Romagnoli, L.: Adjusted maximum likelihood and pseudo-likelihood estimation for noisy Gaussian Markov random fields. Journal of Computational and Graphical Statistics 11(2), 370–388 (2002)

    Article  MathSciNet  Google Scholar 

  32. Cox, D.R., Wermuth, N.: Multivariate Dependencies: Models, Analysis and Interpretation. Chapman and Hall (1996)

    Google Scholar 

  33. Edwards, D.M.: Introduction to Graphical Modelling. Springer (2000)

    Google Scholar 

  34. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications. Monographs on Statistics and Applied Probability, vol. 104. Chapman & Hall (2005)

    Google Scholar 

  35. Wasserman, L.: All of statistics: A concise course in statistical inference. Springer (2010)

    Google Scholar 

  36. Lauritzen, S.L.: Graphical Models. Oxford University Press (1996)

    Google Scholar 

  37. Nocedal, J., Wright, S.J.: Numerical Optimization. 2nd edn. Springer (2006)

    Google Scholar 

  38. Aldrich, J.: R.A. Fisher and the making of maximum likelihood 1912–1922. Statistical Science 12(3), 162–176 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  39. Tikhonov, A.N.: On the stability of inverse problems. Doklady Akademii Nauk SSSR 5, 195–198 (1943)

    Google Scholar 

  40. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society (Series B) 58, 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  41. Zou, H., Hastie, T.: Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society (Series B) 67, 301–320 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  42. Lee, S., Wright, S.J.: Manifold identification in dual averaging methods for regularized stochastic online learning. Journal of Machine Learning Research 13, 1705–1744 (2012)

    MathSciNet  MATH  Google Scholar 

  43. Piatkowski, N., Lee, S., Morik, K.: Spatio-temporal random fields: compressible representation and distributed estimation. Machine Learning 93(1), 115–139 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Candés, E.J., Romberg, J., Tao, T.: Stable signal recovery from incomplete and inaccurate measurements. Comm. Pure Appl. Math. 59, 1207–1223 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lee, S., Wright, S.J.: Implementing algorithms for signal and image reconstruction on graphical processing units. Technical report, University of Wisconsin-Madison (2008)

    Google Scholar 

  46. Okayama, H., Kohno, T., Ishii, Y., Shimada, Y., Shiraishi, K., Iwakawa, R., Furuta, K., Tsuta, K., Shibata, T., Yamamoto, S., Watanabe, S.I., Sakamoto, H., Kumamoto, K., Takenoshita, S., Gotoh, N., Mizuno, H., Sarai, A., Kawano, S., Yamaguchi, R., Miyano, S., Yokota, J.: Identification of genes upregulated in ALK-positive and EGFR/KRAS/ALK-negative lung adenocarcinomas. Cancer Res. 72(1), 100–111 (2012)

    Article  Google Scholar 

  47. Yamauchi, M., Yamaguchi, R., Nakata, A., Kohno, T., Nagasaki, M., Shimamura, T., Imoto, S., Saito, A., Ueno, K., Hatanaka, Y., Yoshida, R., Higuchi, T., Nomura, M., Beer, D.G., Yokota, J., Miyano, S., Gotoh, N.: Epidermal growth factor receptor tyrosine kinase defines critical prognostic genes of stage I lung adenocarcinoma. PLoS ONE 7(9), e43923 (2012)

    Google Scholar 

  48. McCall, M.N., Bolstad, B.M., Irizarry, R.A.: Frozen robust multiarray analysis (fRMA). Biostatistics 11(2), 242–253 (2010)

    Article  Google Scholar 

  49. McCall, M., Murakami, P., Lukk, M., Huber, W., Irizarry, R.: Assessing affymetrix genechip microarray quality. BMC Bioinformatics 12(1), 137 (2011)

    Article  Google Scholar 

  50. Vandenberghe, L., Boyd, S., Wu, S.P.: Determinant maximization with linear matrix inequality constraints. SIAM Journal on Matrix Analysis and Applications 19(2), 499–533 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  51. Levitin, E., Polyak, B.: Constrained minimization methods. USSR Computational Mathematics and Mathematical Physics 6(5), 1–50 (1966)

    Article  Google Scholar 

  52. Nesterov, Y.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers (2004)

    Google Scholar 

  53. Nesterov, Y.: Smooth minimization of non-smooth functions. Mathematical Programming 103, 127–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  54. d’Aspremont, A., Banerjee, O., El Ghaoui, L.: First-order methods for sparse covariance selection. SIAM Journal on Matrix Analysis and Applications 30(1), 56–66 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  55. Lu, Z.: Smooth optimization approach for sparse covariance selection. SIAM Journal on Optimization 19(4), 1807–1827 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  56. Yuan, X.: Alternating direction method for covariance selection models. Journal of Scientific Computing 51(2), 261–273 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Hsieh, C.J., Dhillon, I.S., Ravikumar, P.K., Sustik, M.A.: Sparse inverse covariance matrix estimation using quadratic approximation. In: Advances in Neural Information Processing Systems 24, pp. 2330–2338. MIT Press (2011)

    Google Scholar 

  58. Oztoprak, F., Nocedal, J., Rennie, S., Olsen, P.A.: Newton-like methods for sparse inverse covariance estimation. In: Advances in Neural Information Processing Systems 25, pp. 764–772. MIT Press (2012)

    Google Scholar 

  59. Hsieh, C.J., Sustik, M.A., Dhillon, I., Ravikumar, P., Poldrack, R.: BIG & QUIC: Sparse inverse covariance estimation for a million variables. In: Advances in Neural Information Processing Systems 26, pp. 3165–3173. MIT Press (2013)

    Google Scholar 

  60. Zhao, P., Yu, B.: On model selection consistency of lasso. Journal of Machine Learning Research 7, 2541–2563 (2006)

    MathSciNet  MATH  Google Scholar 

  61. Efron, B.: Bootstrap methods: Another look at the jackknife. Annals of Statistics 7(1), 1–26 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  62. Efron, B., Tibshirani, R.: Cross-validation and the bootstrap: Estimating the error rate of a prediction rule. Technical report. Department of Statistics, Stanford University (May 1995)

    Google Scholar 

  63. Breiman, L.: Bagging predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  64. Emmert-Streib, F., Simoes, R.D.M., Glazko, G., Mcdade, S., Holzinger, A., Dehmer, M., Campbell, F.C.: Functional and genetic analysis of the colon cancer network. BMC Bioinformatics, 1–24 (to appear 2014)

    Google Scholar 

  65. Whitney, H.: Congruent graphs and the connectivity of graphs. American Journal of Mathematics 54(1), 150–168 (1932)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ullmann, J.R.: An algorithm for subgraph isomorphism. Journal of the ACM 23(1), 31–42 (1976)

    Article  MathSciNet  Google Scholar 

  67. Spielman, D.A.: Faster isomorphism testing of strongly regular graphs. In: Proceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing, pp. 576–584 (1996)

    Google Scholar 

  68. Arvind, V., Kurur, P.P.: Graph isomorphism is in SPP. Information and Computation 204(5), 835–852 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  69. Datta, S., Limaye, N., Nimbhorkar, P., Thierauf, T., Wagner, F.: Planar graph isomorphism is in log-space. In: 24th Annual IEEE Conference on Computational Complexity, pp. 203–214 (2009)

    Google Scholar 

  70. Narayanamurthy, S.M., Ravindran, B.: On the hardness of finding symmetries in Markov decision processes. In: Proceedings of the 25th International Conference on Machine Learning, pp. 688–696 (2008)

    Google Scholar 

  71. Cook, D.J., Holder, L.B.: Mining Graph Data. John Wiley & Sons (2006)

    Google Scholar 

  72. Holzinger, A.: Human–computer interaction & knowledge discovery (HCI-KDD): What is the benefit of bringing those two fields to work together? In: Cuzzocrea, A., Kittl, C., Simos, D.E., Weippl, E., Xu, L. (eds.) CD-ARES 2013. LNCS, vol. 8127, pp. 319–328. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lee, S. (2014). Sparse Inverse Covariance Estimation for Graph Representation of Feature Structure. In: Holzinger, A., Jurisica, I. (eds) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. Lecture Notes in Computer Science, vol 8401. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43968-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43968-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43967-8

  • Online ISBN: 978-3-662-43968-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics