Skip to main content

Distributed Computing on Core-Periphery Networks: Axiom-Based Design

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

Inspired by social networks and complex systems, we propose a core-periphery network architecture that supports fast computation for many distributed algorithms and is robust and efficient in number of links. Rather than providing a concrete network model, we take an axiom-based design approach. We provide three intuitive (and independent) algorithmic axioms and prove that any network that satisfies all axioms enjoys an efficient algorithm for a range of tasks (e.g., MST, sparse matrix multiplication, etc.). We also show the minimality of our axiom set: for networks that satisfy any subset of the axioms, the same efficiency cannot be guaranteed for any deterministic algorithm.

Supported in part by the Israel Science Foundation (grant 1549/13).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree construction in o(log log n) communication rounds. SIAM J. Computing 35(1), 120–131 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Lenzen, C., Wattenhofer, R.: Tight bounds for parallel randomized load balancing. In: STOC, pp. 11–20 (2011)

    Google Scholar 

  3. Lenzen, C.: Optimal deterministic routing and sorting on the congested clique. In: PODC, pp. 42–50 (2013)

    Google Scholar 

  4. Avin, C., Lotker, Z., Pignolet, Y.A., Turkel, I.: From caesar to twitter: An axiomatic approach to elites of social networks. CoRR abs/1111.3374 (2012)

    Google Scholar 

  5. Fujita, M., Krugman, P.R., Venables, A.J.: The spatial economy: Cities, regions, and international trade. MIT Press (2001)

    Google Scholar 

  6. Krugman, P.: Increasing Returns and Economic Geography. The Journal of Political Economy 99(3), 483–499 (1991)

    Google Scholar 

  7. Holme, P.: Core-periphery organization of complex networks. Physical Review E 72, 46111 (2005)

    Article  Google Scholar 

  8. Liang, J., Kumar, R., Ross, K.W.: The fasttrack overlay: A measurement study. Computer Networks 50, 842 (2006)

    Article  Google Scholar 

  9. Baset, S., Schulzrinne, H.: An analysis of the skype peer-to-peer internet telephony protocol. In: INFOCOM, pp. 1–11 (2006)

    Google Scholar 

  10. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics. McGraw-Hill (1998)

    Google Scholar 

  11. Lynch, N.: Distributed Algorithms. Morgan Kaufmann (1995)

    Google Scholar 

  12. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)

    Google Scholar 

  13. Adamic, L.: The small world web. Research and Advanced Technology for Digital Libraries, 852–852 (1999)

    Google Scholar 

  14. Bonanno, G., Caldarelli, G., Lillo, F., Mantegna, R.: Topology of correlation-based minimal spanning trees in real and model markets. Phys. Rev. E 68 (2003)

    Google Scholar 

  15. Chen, C., Morris, S.: Visualizing evolving networks: Minimum spanning trees versus pathfinder networks. In: INFOVIS, pp. 67–74 (2003)

    Google Scholar 

  16. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for constant diameter graphs. Distributed Computing 18(6), 453–460 (2006)

    Article  MATH  Google Scholar 

  17. Avin, C., Borokhovich, M., Lotker, Z., Peleg, D.: Distributed computing on core-periphery networks: Axiom-based design. CoRR abs/1404.6561 (2014)

    Google Scholar 

  18. Nesetril, J., Milkova, E., Nesetrilova, H.: Otakar boruvka on minimum spanning tree problem translation of both the 1926 papers, comments, history. Discrete Mathematics 233(1-3), 3–36 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Avin, C., Borokhovich, M., Lotker, Z., Peleg, D. (2014). Distributed Computing on Core-Periphery Networks: Axiom-Based Design. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics