Skip to main content

Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8573))

Included in the following conference series:

Abstract

We introduce a new structure for a set of points in the plane and an angle α, which is similar in flavor to a bounded-degree MST. We name this structure α-MST. Let P be a set of points in the plane and let 0 < α ≤ 2π be an angle. An α-ST of P is a spanning tree of the complete Euclidean graph induced by P, with the additional property that for each point p ∈ P, the smallest angle around p containing all the edges adjacent to p is at most α. An α-MST of P is then an α-ST of P of minimum weight. For α < π/3, an α-ST does not always exist, and, for α ≥ π/3, it always exists [1,2,9]. In this paper, we study the problem of computing an α-MST for several common values of α.

Motivated by wireless networks, we formulate the problem in terms of directional antennas. With each point p ∈ P, we associate a wedge ∧ p of angle α and apex p. The goal is to assign an orientation and a radius r p to each wedge ∧ p, such that the resulting graph is connected and its MST is an α-MST. (We draw an edge between p and q if p ∈ ∧ q, q ∈ ∧ p, and |pq| ≤ r p , r q .) Unsurprisingly, the problem of computing an α-MST is NP-hard, at least for α = π and α = 2π/3. We present constant-factor approximation algorithms for α = π/2, 2π/3, π.

One of our major results is a surprising theorem for α = 2π/3, which, besides being interesting from a geometric point of view, has important applications. For example, the theorem guarantees that given any set P of 3n points in the plane and any partitioning of the points into n triplets, one can orient the wedges of each triplet independently, such that the graph induced by P is connected. We apply the theorem to the antenna conversion problem.

A version including the missing proofs can be found at http://arxiv.org/abs/1402.6096 .

Work by R. Aschner was partially supported by the Lynn and William Frankel Center for Computer Sciences. Work by M. Katz was partially supported by grant 1045/10 from the Israel Science Foundation. Work by M. Katz and R. Aschner was partially supported by grant 2010074 from the United States – Israel Binational Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ackerman, E., Gelander, T., Pinchasi, R.: Ice-creams and wedge graphs. Comput. Geom.: Theory & Applications 46(3), 213–218 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aichholzer, O., Hackl, T., Hoffmann, M., Huemer, C., Pór, A., Santos, F., Speckmann, B., Vogtenhuber, B.: Maximizing maximal angles for plane straight-line graphs. Comput. Geom.: Theory & Applications 46(1), 17–28 (2013)

    Article  MATH  Google Scholar 

  3. Arkin, E.M., Fekete, S.P., Islam, K., Meijer, H., Mitchell, J.S.B., Rodríguez, Y.N., Polishchuk, V., Rappaport, D., Xiao, H.: Not being (super) thin or solid is hard: A study of grid Hamiltonicity. Comput. Geom.: Theory & Applications 42(6-7), 582–605 (2009)

    Article  MATH  Google Scholar 

  4. Arora, S.: Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems. J. ACM 45(5), 753–782 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Aschner, R., Katz, M.J., Morgenstern, G.: Symmetric connectivity with directional antennas. Comput. Geom.: Theory & Applications 46(9), 1017–1026 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bárány, I., Pór, A., Valtr, P.: Paths with no small angles. SIAM Journal Discrete Mathematics 23(4), 1655–1666 (2009)

    Article  MATH  Google Scholar 

  7. Bose, P., Carmi, P., Damian, M., Flatland, R., Katz, M.J., Maheshwari, A.: Switching to directional antennas with constant increase in radius and hop distance. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 134–146. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Caragiannis, I., Kaklamanis, C., Kranakis, E., Krizanc, D., Wiese, A.: Communication in wireless networks with directional antennas. In: 20th ACM Sympos. on Parallelism in Algorithms and Architectures, pp. 344–351 (2008)

    Google Scholar 

  9. Carmi, P., Katz, M.J., Lotker, Z., Rosén, A.: Connectivity guarantees for wireless networks with directional antennas. Comput. Geom.: Theory & Applications 44(9), 477–485 (2011)

    Article  MATH  Google Scholar 

  10. Chan, T.M.: Euclidean bounded-degree spanning tree ratios. Discrete & Computational Geometry 32(2), 177–194 (2004)

    MATH  MathSciNet  Google Scholar 

  11. Dobrev, S., Eftekhari, M., MacQuarrie, F., Manuch, J., Morales-Ponce, O., Narayanan, L., Opatrny, J., Stacho, L.: Connectivity with directional antennas in the symmetric communication model. In: Mexican Conf. on Discrete Mathematics and Computational Geometry (2013)

    Google Scholar 

  12. Dumitrescu, A., Pach, J., Tóth, G.: Drawing Hamiltonian cycles with no large angles. Electronic Journal of Combinatorics 19(2), P31 (2012)

    Google Scholar 

  13. Efrat, A., Itai, A., Katz, M.J.: Geometry helps in bottleneck matching and related problems. Algorithmica 31(1), 1–28 (2001)

    MATH  MathSciNet  Google Scholar 

  14. Fekete, S.P., Woeginger, G.J.: Angle-restricted tours in the plane. Comput. Geom.: Theory & Applications 8, 195–218 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Itai, A., Papadimitriou, C.H., Szwarcfiter, J.L.: Hamilton paths in grid graphs. SIAM Journal on Computing 11(4), 676–686 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  16. Jothi, R., Raghavachari, B.: Degree-bounded minimum spanning trees. Discrete Applied Mathematics 157(5), 960–970 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Khuller, S., Raghavachari, B., Young, N.E.: Low-degree spanning trees of small weight. SIAM Journal on Computing 25(2), 355–368 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kranakis, E., Krizanc, D., Morales, O.: Maintaining connectivity in sensor networks using directional antennae. In: Nikoletseas, S., Rolim, J.D.P. (eds.) Theoretical Aspects of Distributed Computing in Sensor Networks, ch. 3, Springer

    Google Scholar 

  19. Mitchell, J.S.B.: Guillotine subdivisions approximate polygonal subdivisions: a simple polynomial-time approximation scheme for geometric TSP, k-MST, and related problems. SIAM Journal on Computing 28(4), 1298–1309 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  20. Papadimitriou, C.H., Vazirani, U.V.: On two geometric problems related to the travelling salesman problem. Journal of Algorithms 5(2), 231–246 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aschner, R., Katz, M.J. (2014). Bounded-Angle Spanning Tree: Modeling Networks with Angular Constraints. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8573. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43951-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43951-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43950-0

  • Online ISBN: 978-3-662-43951-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics