Skip to main content

Improved Submatrix Maximum Queries in Monge Matrices

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

We present efficient data structures for submatrix maximum queries in Monge matrices and Monge partial matrices. For n×n Monge matrices, we give a data structure that requires O(n) space and answers submatrix maximum queries in O(logn) time. The best previous data structure [Kaplan et al., SODA‘12] required O(n logn) space and O(log2 n) query time. We also give an alternative data structure with constant query-time and O(n 1 + ε) construction time and space for any fixed ε < 1. For n×n partial Monge matrices we obtain a data structure with O(n) space and O(logn ·α(n)) query time. The data structure of Kaplan et al. required O(n logn ·α(n)) space and O(log2 n) query time. Our improvements are enabled by a technique for exploiting the structure of the upper envelope of Monge matrices to efficiently report column maxima in skewed rectangular Monge matrices. We hope this technique will be useful in obtaining faster search algorithms in Monge partial matrices. In addition, we give a linear upper bound on the number of breakpoints in the upper envelope of a Monge partial matrix. This shows that the inverse Ackermann α(n) factor in the analysis of the data structure of Kaplan et. al is superfluous.

A full version of this paper can be found as Arxiv preprint [18].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aggarwal, A., Klawe, M.: Applications of generalized matrix searching to geometric algorithms. Discrete Appl. Math. 27, 3–23 (1990)

    Article  MathSciNet  Google Scholar 

  2. Aggarwal, A., Klawe, M.M., Moran, S., Shor, P., Wilber, R.: Geometric applications of a matrix-searching algorithm. Algorithmica 2(1), 195–208 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aggarwal, A., Park, J.: Notes on searching in multidimensional monotone arrays. In: 29th FOCS, pp. 497–512 (1988)

    Google Scholar 

  4. Alstrup, S., Brodal, G.S., Rauhe, T.: New data structures for orthogonal range searching. In: 41st FOCS, pp. 198–207 (2000)

    Google Scholar 

  5. Amir, A., Fischer, J., Lewenstein, M.: Two-dimensional range minimum queries. In: Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 286–294. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  6. Borradaile, G., Klein, P.N., Mozes, S., Nussbaum, Y., Wulff-Nilsen, C.: Multiple-source multiple-sink maximum flow in directed planar graphs in near-linear time. In: 52nd FOCS, pp. 170–179 (2011)

    Google Scholar 

  7. Brodal, G.S., Davoodi, P., Lewenstein, M., Raman, R., Srinivasa Rao, S.: Two dimensional range minimum queries and fibonacci lattices. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 217–228. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Brodal, G.S., Davoodi, P., Rao, S.S.: On space efficient two dimensional range minimum data structures. In: de Berg, M., Meyer, U. (eds.) ESA 2010, Part II. LNCS, vol. 6347, pp. 171–182. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Burkard, R.E., Klinz, B., Rudolf, R.: Perspectives of Monge properties in optimization. Discrete Appl. Math. 70, 95–161 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Chan, T.M., Larsen, K.G., Pǎtraşcu, M.: Orthogonal range searching on the RAM. In: 27th SOCG, pp. 354–363 (2011) (revisited)

    Google Scholar 

  11. Chazelle, B.: A functional approach to data structures and its use in multidimensional searching. SICOMP 17, 427–462 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique. Algorithmica 1, 133–162 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chazelle, B., Rosenberg, B.: Computing partial sums in multidimensional arrays. In: 5th SOCG, pp. 131–139 (1989)

    Google Scholar 

  14. Demaine, E.D., Landau, G.M., Weimann, O.: On cartesian trees and range minimum queries. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part I. LNCS, vol. 5555, pp. 341–353. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  15. Farzan, A., Munro, J.I., Raman, R.: Succinct indices for range queries with applications to orthogonal range maxima. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part I. LNCS, vol. 7391, pp. 327–338. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  16. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum spanning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gabow, H., Bentley, J.L., Tarjan, R.E.: Scaling and related techniques for geometry problems. In: 16th STOC, pp. 135–143 (1984)

    Google Scholar 

  18. Gawrychowski, P., Mozes, S., Weimann, O.: Improved submatrix maximum queries in Monge matrices. arXiv:1307.2313 (2013)

    Google Scholar 

  19. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SICOMP 13(2), 338–355 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hoffman, A.J.: On simple linear programming problems. In: Proc. Symp. Pure Math., vol. VII, pp. 317–327. Amer. Math. Soc. (1963)

    Google Scholar 

  21. Kaplan, H., Mozes, S., Nussbaum, Y., Sharir, M.: Submatrix maximum queries in monge matrices and monge partial matrices, and their applications. In: 23rd SODA, pp. 338–355 (2012)

    Google Scholar 

  22. Klawe, M.M., Kleitman, D.J.: An almost linear time algorithm for generalized matrix searching. SIAM J. Discrete Math. 3, 81–97 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  23. Monge, G.: Mémoire sur la théorie des déblais et des remblais. In: Histoire de l’Académie Royale des Science, pp. 666–704 (1781)

    Google Scholar 

  24. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. Comput. Geom. 42(4), 342–351 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Park, J.K.: A special case of the n-vertex traveling-salesman problem that can be solved in O(n) time. Inf. Process. Lett. 40(5), 247–254 (1991)

    Article  MATH  Google Scholar 

  26. Sharir, M., Agarwal, P.K.: Davenport-Schinzel sequences and their geometric applications. Cambridge University Press, New York (1995)

    MATH  Google Scholar 

  27. Tiskin, A.: Fast distance multiplication of unit-monge matrices. In: 21st SODA, pp. 1287–1296 (2010)

    Google Scholar 

  28. Yuan, H., Atallah, M.J.: Data structures for range minimum queries in multidimensional arrays. In: 21st SODA, pp. 150–160 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gawrychowski, P., Mozes, S., Weimann, O. (2014). Improved Submatrix Maximum Queries in Monge Matrices. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics