Skip to main content

Characterization of Binary Constraint System Games

  • Conference paper
Automata, Languages, and Programming (ICALP 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8572))

Included in the following conference series:

Abstract

We investigate a simple class of multi-prover interactive proof systems (classical non-local games), called binary constraint system (BCS) games, and characterize those that admit a perfect entangled strategy (i.e., a strategy with value 1 when the provers can use shared entanglement). Our characterization is in terms of a system of matrix equations. One application of this characterization is that, combined with a recent result of Arkhipov, it leads to a simple algorithm for determining whether certain restricted BCS games have a perfect entangled strategy, and, for the instances that do not, for bounding their value strictly below 1. An open question is whether, for the case of general BCS games, making this determination is computationally decidable. Our characterization might play a useful role in the resolution of this question.

Full version is available at http://arxiv.org/abs/1209.2729

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aravind, P.K.: Bell’s Theorem without inequalities and only two distant observers. Found. Phys. Lett. 15(4), 397–405 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aravind, P.K.: Quantum mysteries revisited again. Am. J. Phys. 72, 1303–1307 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Arkhipov, A.: Extending and characterizing quantum magic games. arXiv:1209.3819 [quant-ph] (2012)

    Google Scholar 

  4. Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity 1, 3–40 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  7. Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to remove intractability assumptions. In: Proc. of the 20th ACM Symp. on Theory of Computing (STOC 1988), pp. 113–131 (1988)

    Google Scholar 

  8. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  Google Scholar 

  9. Cleve, R., Høyer, P., Toner, B., Watrous, J.: Consequences and limits of nonlocal strategies. In: Proc. of the 19th IEEE Conf. on Computational Complexity (CCC 2004), pp. 236–249 (2004)

    Google Scholar 

  10. Cleve, R., Mittal, R.: Characterization of binary constraint system games (2013), http://arxiv.org/abs/1209.2729

  11. Cameron, P.J., Montanaro, A., Newman, M.W., Severini, S., Winter, A.: On the quantum chromatic number of a graph. The Electronic Journal of Combinatorics [Electronic Only] 14(1):Research Paper R81, 15 (2007)

    Google Scholar 

  12. Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Interactive proofs and the hardness of approximating cliques. J. ACM 43(2), 268–292 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ji, Z.: Binary constraint system games and locally commutative reductions. arXiv:1310.3794 [quant-ph] (2013)

    Google Scholar 

  14. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65(27), 3373–3376 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Mermin, N.D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65(3), 803–815 (1993)

    Article  MathSciNet  Google Scholar 

  16. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Speelman, F.: Personal communication (2011)

    Google Scholar 

  18. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. in Math. Phys. 4(2), 93–100 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cleve, R., Mittal, R. (2014). Characterization of Binary Constraint System Games. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds) Automata, Languages, and Programming. ICALP 2014. Lecture Notes in Computer Science, vol 8572. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43948-7_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43948-7_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43947-0

  • Online ISBN: 978-3-662-43948-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics