Skip to main content

Cryobiology and Thermodynamics

  • Chapter
  • First Online:
Cryosurgery

Abstract

Cryobiology is the branch of biology that studies the effects of low temperatures on living tissues. Cryosurgery involves performance of one or more freeze-thaw cycles in order to destroy tissue. Heat transfer between the cryogen and tissue occurs followed by tissue damage. Distinction is made between direct and indirect tissue damage mechanisms. Direct mechanisms involve both extracellular and intracellular formation of ice crystals as well as movement of water towards osmotic gradient. Also direct impact of cold on protein structure and enzyme systems is significant. Indirect tissue damage mechanisms involve vascular stasis, tissue ischaemia, and inflammatory and immunological responses. Mechanisms of crystal forming will be described, namely, by way of heterogeneous and homogeneous nucleation; likewise, the explanation on why forming of intracellular crystals is impaired in comparison with forming of extracellular crystals. Notion of the osmotic gradient determining movement of water molecules during freezing and thawing will be elaborated, and the impact of parameters upon change of which it is possible to monitor depth, width and circumscription of cryogenic lesion will also be discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stańczyk M, Telega JJ. Thermal problems in biomechanics – a review. Part III. Cryosurgery, cryopreservation and cryotherapy. Acta Bioeng Biomech. 2003;5(2):3–22.

    Google Scholar 

  2. Korpan N. A history of cryosurgery: its development and future. J Am Coll Surg. 2007;204(2):314–24.

    Article  PubMed  Google Scholar 

  3. Rubinsky B. Cryosurgery. Annu Rev Biomed Eng. 2000;2:157–87.

    Article  PubMed  CAS  Google Scholar 

  4. Thai KE, Sinclair RD. Cryosurgery of benign skin lesions. Australas J Dermatol. 1999;40(4):175–84, quiz 185–6.

    Article  PubMed  CAS  Google Scholar 

  5. Pasquali P. Cryosurgery. In: Rigel DS, Robinson JK, Ross MI, Friedman R, Cockerell CJ, Lim HW, Stockfleth E, Kirkwood JM, editors. Cancer of the skin. 2nd ed. Philadelphia: Elsevier/Saunders; 2011. p. 450–61.

    Chapter  Google Scholar 

  6. Zouboulis CC. Principles of cutaneous cryosurgery: an update. Dermatology. 1999;198(2):111–7.

    Article  PubMed  CAS  Google Scholar 

  7. Gage AA, Baust JM, Baust JG. Experimental cryosurgery investigations in vivo. Cryobiology. 2009;59(3):229–43.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Zimmerman EE, Crawford P. Cutaneous cryosurgery. Am Fam Physician. 2012;86(12):1118–24.

    PubMed  Google Scholar 

  9. Saliken JC, Donnelly BJ, Rewcastle JC. The evolution and state of modern technology for prostate cryosurgery. Urology. 2002;60(2 Suppl 1):26–33.

    Article  PubMed  Google Scholar 

  10. Swann MH, Taylor TA. Practical cryotherapy for skin disease. Mo Med. 2007;104(6):509–12.

    PubMed  Google Scholar 

  11. Takeda H, Maruyama S, Okajima J, Aiba S, Komiya A. Development and estimation of a novel cryoprobe utilizing the Peltier effect for precise and safe cryosurgery. Cryobiology. 2009;59(3):275–84.

    Article  PubMed  CAS  Google Scholar 

  12. Neel 3rd HB, Ketcham AS, Hammond WG. Requisites for successful cryogenic surgery of cancer. Arch Surg. 1971;102(1):45–8.

    Article  PubMed  Google Scholar 

  13. Yiu WK, Cheng SW, Sumpio BE. Synergistic effect of cool/thaw cycles on vascular cells in an in vitro model of cryoplasty. J Vasc Interv Radiol. 2008;19(6):925–30.

    Article  PubMed  Google Scholar 

  14. Seifert JK, France MP, Zhao J, Bolton EJ, Finlay I, Junginger T, Morris DL. Large volume hepatic freezing: association with significant release of the cytokines interleukin-6 and tumor necrosis factor a in a rat model. World J Surg. 2002;26(11):1333–41.

    Article  PubMed  Google Scholar 

  15. Staren ED, Sabel MS, Gianakakis LM, Wiener GA, Hart VM, Gorski M, Dowlatshahi K, Corning BF, Haklin MF, Koukoulis G. Cryosurgery of breast cancer. Arch Surg. 1997;132(1):28–33.

    Article  PubMed  CAS  Google Scholar 

  16. Andrade JG, Khairy P, Dubuc M. Catheter cryoablation: biology and clinical uses. Circ Arrhythm Electrophysiol. 2013;6:218–27.

    Article  PubMed  Google Scholar 

  17. Van den Bosch MA, Josan S, Bouley DM, Chen J, Gill H, Rieke V, Butts-Pauly K, Daniel BL. MR imaging-guided percutaneous cryoablation of the prostate in an animal model: in vivo imaging of cryoablation-induced tissue necrosis with immediate histopathologic correlation. J Vasc Interv Radiol. 2009;20(2):252–8.

    Article  PubMed  Google Scholar 

  18. Pease GR, Rubinsky B, Wong ST, Roos MS, Gilbert JC, Arav A. An integrated probe for magnetic resonance imaging monitored skin cryosurgery. J Biomech Eng. 1995;117(1):59–63.

    Article  PubMed  CAS  Google Scholar 

  19. Edd JF, Rubinsky B. Detecting cryoablation with EIT and the benefit of including ice front imaging data. Physiol Meas. 2006;27(5):S175–85.

    Article  PubMed  Google Scholar 

  20. Otten DM, Rubinsky B. Front-tracking image reconstruction algorithm for EIT-monitored cryosurgery using the boundary element method. Physiol Meas. 2005;26(4):503–16.

    Article  PubMed  Google Scholar 

  21. Themstrup L, Banzhaf C, Mogensen M, Jemec GB. Cryosurgery treatment of actinic keratoses monitored by optical coherence tomography: a pilot study. Dermatology. 2012;225(3):242–7.

    Article  PubMed  Google Scholar 

  22. Terhorst D, Maltusch A, Stockfleth E, Lange-Asschenfeldt S, Sterry W, Ulrich M, Lange-Asschenfeldt B. Reflectance confocal microscopy for the evaluation of acute epidermal wound healing. Wound Repair Regen. 2011;19(6):671–9.

    Article  PubMed  Google Scholar 

  23. Hoffmann NE, Bischof JC. The cryobiology of cryosurgical injury. Urology. 2002;60(2 Suppl 1):40–9.

    Article  PubMed  Google Scholar 

  24. Erinjeri JP, Clark TW. Cryoablation: mechanism of action and devices. J Vasc Interv Radiol. 2010;21(8 Suppl):S187–91.

    Article  PubMed  Google Scholar 

  25. Mazur P, Pinn IL, Kleinhans FW. The temperature of intracellular ice formation in mouse oocytes vs. the unfrozen fraction at that temperature. Cryobiology. 2007;54(2):223–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Goel R, Anderson K, Slaton J, Schmidlin F, Vercellotti G, Belcher J, Bischof JC. Adjuvant approaches to enhance cryosurgery. J Biomech Eng. 2009;131(7):074003.

    Article  PubMed  Google Scholar 

  27. De Souza RC, Cunha JM, Ferreira SH, Cunha FQ, Lima HC. Different inflammatory mediators induce inflammation and pain after application of liquid nitrogen to the skin. Cryobiology. 2006;53(3):319–29.

    Article  PubMed  Google Scholar 

  28. Robilotto AT, Baust JM, Van Buskirk RG, Gage AA, Baust JG. Temperature-dependent activation of differential apoptotic pathways during cryoablation in a human prostate cancer model. Prostate Cancer Prostatic Dis. 2013;16(1):41–9.

    Article  PubMed  CAS  Google Scholar 

  29. Mazur P. A biologist’s view of the relevance of thermodynamics and physical chemistry to cryobiology. Cryobiology. 2010;60(1):4–10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Day RE, Kitchen P, Owen D, Bland C, Marshall L, Conner AC, Bill RM, Conner MT. Human aquaporins: regulators of transcellular water flow. Biochim Biophys Acta. 2014;1840(5):1492–506.

    Article  PubMed  CAS  Google Scholar 

  31. Gonen T, Walz T. The structure of aquaporins. Q Rev Biophys. 2006;39(4):361–96.

    Article  PubMed  CAS  Google Scholar 

  32. Leite ER, Ribeiro C. Introduction. In: Crystallization and growth of colloidal nanocrystals. SpringerBriefs in materials. New York: Springer; 2012. p. 1–6.

    Google Scholar 

  33. Bigg EK. The formation of ice crystals by the freezing of droplets. London: Imperial College; 1953.

    Google Scholar 

  34. Bansal A, Jain S, Gupta S. Cryosurgery in the treatment of oro-facial lesions. Indian J Dent Res. 2012;23(2):297.

    PubMed  Google Scholar 

  35. Dias CL, Ala-Nissila T, Wong-ekkabut J, Vattulainen I, Grant M, Karttunen M. The hydrophobic effect and its role in cold denaturation. Cryobiology. 2010;60(1):91–9.

    Article  PubMed  CAS  Google Scholar 

  36. Ismail M, Bokaee S, Morgan R, Davies J, Harrington KJ, Pandha H. Inhibition of the aquaporin 3 water channel increases the sensitivity of prostate cancer cells to cryotherapy. Br J Cancer. 2009;100(12):1889–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Ledda S, Bogliolo L, Succu S, Ariu F, Bebbere D, Leoni GG, Naitana S. Oocyte cryopreservation: oocyte assessment and strategies for improving survival. Reprod Fertil Dev. 2007;19(1):13–23.

    Article  PubMed  CAS  Google Scholar 

  38. Müller-Schweinitzer E. Cryopreservation of vascular tissues. Organogenesis. 2009;5(3):97–104.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zhou L, Kambin P, Casey KF, Bonner FJ, O’Brien E, Shao Z, Ou S. Mechanism research of cryoanalgesia. Neurol Res. 1995;17(4):307–11.

    PubMed  CAS  Google Scholar 

  40. Fasano VA, Peirone SM, Zeme S, Filippi M, Broggi G, de Mattei M, Sguazzi A. Cryoanalgesia. Ultrastructural study on cryolytic lesion of sciatic nerve in rat and rabbit. Acta Neurochir Suppl (Wien). 1987;39:177–80.

    Article  CAS  Google Scholar 

  41. Wagner R, DeLeo JA, Heckman HM, Myers RR. Peripheral nerve pathology following sciatic cryoneurolysis: relationship to neuropathic behaviors in the rat. Exp Neurol. 1995;133(2):256–64.

    Article  PubMed  CAS  Google Scholar 

  42. Hovatta O. Methods for cryopreservation of human ovarian tissue. Reprod Biomed Online. 2005;10(6):729–34.

    Article  PubMed  Google Scholar 

  43. Karlsson JO. Effects of solution composition on the theoretical prediction of ice nucleation kinetics and thermodynamics. Cryobiology. 2010;60(1):43–51.

    Article  PubMed  CAS  Google Scholar 

  44. Choi J, Bischof JC. Review of biomaterial thermal property measurements in the cryogenic regime and their use for prediction of equilibrium and non-equilibrium freezing applications in cryobiology. Cryobiology. 2010;60(1):52–70.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  45. Zachariassen KE, Kristiansen E, Pedersen SA, Hammel HT. Ice nucleation in solutions and freeze-avoiding insects-homogeneous or heterogeneous? Cryobiology. 2004;48(3):309–21.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jānis Ķīsis MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ķīsis, J., Zavorins, A. (2015). Cryobiology and Thermodynamics. In: Pasquali, P. (eds) Cryosurgery. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-43939-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-43939-5_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-43938-8

  • Online ISBN: 978-3-662-43939-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics